OpenVMS V8.4-1H1 performance

Performance improvements on HP Integrity bl8x0c–i4 and rx2800-i4 servers

> Colin Butcher XDelta Limited

www.xdelta.co.uk +44 117 904 8209

XDelta – who we are

- Independent consultants since 1996:
 - UK based with international reach
 - Over 30 years experience with OpenVMS
- We design and implement solutions:
 - Mission critical systems
- Cross-sector experience
- Engineering background
- Gartner (2009):
 - Identified XDelta as one of few companies world-wide capable of OpenVMS migration related projects

Business Partner

HP Integrity -i4 servers - highlights

- "Poulson" 2.53GHz 8 core processor with shared L3 cache
- Around 30% per core greater throughput
- Reduced NUMA effects for same core count
- Better memory latency and bandwidth
- Improved floating point and integer performance
- bl870c-i4 (32 cores) about 1.3x better than bl890c-i2

HP Integrity -i4 servers – hardware

• bl860c-i4:

single width, 16 cores, 384GB, 4x 10GigE, 3x mezz, 1c2d SAS

• bl870c-i4:

double width, 32 cores, 768GB, 8x 10GigE, 6x mezz, 2c4d SAS

• bl890c-i4:

quad width, 64 cores, 1.5TB, 16x 10GigE, 12x mezz, 4c8d SAS

- OpenVMS currently supports a maximum of 32 cores
- OpenVMS also supports nPARs
- rx2800-i4:

2U rack, 16 cores, 384GB, 4x 1GigE, 6x PCIe, 1c8d SAS

Migrating from Alpha to Integrity

- Multi-core processors, NUMA, hyperthreading
- 10GigE network
- 8GigFC SAN
- Blade chassis connectivity for bl8x0c-i4
- EVA to 3Par storage migration
- bl870c-i4 and bl890c-i4: good for GS1280 migration

Migration to Integrity and beyond

Server hardware differences (-i2 to -i4)

- Higher clock rate
- Double the core count (8 cores)
- Greater memory capacity
- Reduced memory latency
- Shared on-chip cache
- 10GigE LoM (LAN on Motherboard) LAN only, not FCoE
- Still use 8GigFC mezzanine cards

Chassis hardware – c7000 / c3000

- Virtual Connect (GigE, 1/10GigE, 8GigFC)
- Flex10
- LAN side of FlexFabric
- 10GigE chassis based switching
- 10GigE passthrough
- 1GigE passthrough
- 8GigFC chassis switching
- 4GigFC passthrough

Infrastructure hardware

- 3Par storage arrays at 8GigFC
- SSD devices for local storage and 3Par storage arrays
- 8GigFC SAN HP / Brocade switches
- 10GigE networking HP Procurve, Cisco

OpenVMS V8.4-1H1 on –i4 servers

- Complete build of base system from sources
- -i4 hardware support (32 cores supported, threads off)
- New LoM driver
- VSI branding

CPU architecture - Intel 9500 – "Poulson"

System architecture – rx2800-i4

Blade architecture – bl8x0c-i4

QPI fabric – bl870c-i4 and bl890c-i4

High core count

- CPU 00 is the primary CPU try to reduce its workload
- Fastpath CPU selection be aware of physical layout
- CPU choice for dedicated lock manager
- CPU choice for TCPIP packet processing engine
- Consider physical layout RADs and NUMA

Hyperthreading

- Hyperthreading is extremely workload dependent
- In general the OpenVMS scheduler does a better job
- Enable / disable hyperthreads and reboot
- "CPU" count will appear to double when enabled Note: OpenVMS currently supports a maximum of 32 "CPUs"

Memory architecture – bl890c-i4

NUMA (non-uniform memory access)

- OpenVMS uses large shared memory regions:
 - XFC (50% available memory by default)
 - o RMS global buffers
 - Global sections (especially database caches)
 - Memory disc driver (MD devices)
- Useful starting point for OpenVMS is "mostly UMA"

Preliminary Performance Results i2 vs. i4

- The following slides contain preliminary data on performance differences between selected i2 and i4 servers running OpenVMS E8.4-1H1.
- The data was generated from VSI-written programs used to measure certain aspects of system performance.
- The results shown here should not be used as a general characterization of overall system performance or as an indication of how any specific application may perform.

i2 vs. i4 Memory Bandwidth

i2 vs. i4 Memory Latency

i2 vs. i4 Floating Point Performance

i2 vs. i4 Integer Performance

Performance engineering – use T4

- Avoid guesswork run T4 all the time
- Without good data you cannot do good performance work
- A faster machine just waits more quickly
- Don't make it go faster, stop it going slower
- The fastest IO is the IO you don't do
- The fastest code is the code you don't execute

Summary - VMS V8.4-1H1 on -i4 servers

- Disable devices you don't use SYSMAN IO SET EXCLUDE=(EWC,EWD,...)
- Experiment with memory interleave setting
- Use memory reservations
- Fastpath settings for device types
- Dedicated CPU for TCPIP + LCKMGR
- Experiment with hyperthreading

OpenVMS Rolling Roadmap

Q2 2015

Q4 2015

Q3 2016

Q3 2017

<u>OpenVMS V8.4-1H1</u>

Architecture: Itanium

Itanium[®] Processor 9500 series

HP Integrity System Support

- rx2800 i4
- HP Integrity Server Blades
 - >BL860c i4>BL870c i4
 - >BL890c i4
- i2 versions of the above
- Blades FlexFabric LAN support

Software

- Improved performance over i2
- Availability Manager update to 64-bit desktop

Architecture: Itanium

HP Integrity system support

- V8.4-1H1 supported servers and more - such as rx2660, rx3600, rx6600,
- More network and storage devices
- Kittson-based systems (when available)

Software

- Improved performance, reliability
- New TCP/IP stack
- Support 64 cores (threads off)
- Enhanced GNV/CRTL for open source porting and development
- JAVA 1.8
- Updated Open Source Kits
 - Apache, gSOAP, Samba
 - SSL, Kerberos
 - and more

Two releases are planned between V8.4-1H1 and V9.0. The order in which work makes it into these releases will be determined by readiness, HW availability, and customer feedback.

OpenVMS V9.0 Architecture: Common

New File System

- Eliminate 2TB volume size limit
- Improved performance

Architecture: Integrity

Additional servers & I/O, depending on feedback

Architecture: X86-64

- Selected HP servers
- OpenVMS as a VM guest
- Binary Translator
- Updated Language Standards
 - ≻ C
 - ≻ C++
 - FORTRAN

OpenVMS V8.4-1H1 performance

Performance improvements on HP Integrity bl8x0c–i4 and rx2800-i4 servers

> Colin Butcher XDelta Limited

www.xdelta.co.uk +44 117 904 8209

