
What we Learned
From the Port

Berlin, April 2024

Camiel Vanderhoeven | Chief Architect & Strategist

Vision

Mission

By linking the past to the future, we help OpenVMS
users to protect and realize the full value of their

application investments.

We combine leading edge technology and new
industry standards with OpenVMS systems to

provide our customers and partners with choice and
opportunity to profitably prioritize business needs.

Agenda

1 Masquerade

2 Why Probe?

3 “Unified” Extensible Firmware Interface

4 Let’s be different!

5 Developing on a VM

Developing Using VMs

Masquerade

4 modes
• 4 pagetables per process
• Complex code for transitioning between modes

8k pages
• Native pages on x86 are 4k
• VMS pages are 8k
• Memory needed for UEFI may be in adjacent 4k pages

Queue Instructions

Probe Instructions

Why Probe?

Why Probe?

System service calls
• Verify caller has access
• Avoid pagefaults at elevated IPL

Interrupts / exceptions
• Avoid pagefaults at elevated IPL
• Invalid stack pointers

Why Probe?

No probe instructions on X86
• Walk the page tables “by hand”
• Validate input parameters
• ~ 900 instructions executed

Expensive

“Unified” Extensible
Firmware Interface

Where we came from

• Single hardware vendor:
Digital / Compaq / HP

• SRM
• Galaxy Configuration Tree

Alpha

• Single vendor: HP / HPE
• Extensible Firmware Interface
• System Abstraction Layer /

Processor Abstraction Layer
Itanium

Where we ended up on X86

Multiple vendors / hypervisors

UEFI (without SAL or PAL)

ACPI (advanced Configuration and Power Interface)

Every hypervisor is different
• Sometimes even between versions of the same Hypervisor

Bare-metal hardware is different again

“Un ifie d ” Ext e n s ib le Firm w a re In t e rfa c e

BERT BOOT BGRT CPEP CSRT DBG2 DBGP
DSDT DMAR DPPT DRTM ECDT EINJ ERST
ETDT FACS FADT FPDT GTDT HEST HMAT
HPET IBFT IORT IVRS LPIT MADT MCFG
MCHI MPST MSCT MSDM NFIT OEMx PCCT
PDTT PMTT PPTT PSDT RASF RSDP RSDT
SBST SDEI SDEV SLIC SLIT SPCR SPMI
SRAT SSDT STAO TCPA TPM2 UEFI WAET
WDAT WDDT WDRT WPBT WSMT XENV XSDT

Let’s be Different!

VMware, VirtualBox, KVM

Virtual machines pretend to be real hardware

• Provide emulated devices and controllers – SCSI, SATA, Intel
NIC, Chipset

• Optionally provide higher speed, lower latency virtualized
I/O interfaces

• Guest OS can use standard device drivers

Able to accommodate OS’es that know nothing
about Virtual Machines

Microsoft Hyper-V

Virtual machines are unapologetically
virtual constructs
• Does not provide emulated devices or controllers
• Only provide virtualized I/O interfaces
• Guest required to use Hyper-V specific device drivers

Requires the OS to know how to run on
Hyper-V

Developing using VMs

Developing on VM’s

Versatility
• Test on the same system you use for other things

Resiliency
• Snapshots
• Pre-built appliances
• Crash? Easy roll-back

Flexibility
• More memory?
• More CPU cores?
• Different NIC?

Debugging
• Post-mortem

Thank you

	What we Learned From the Port
	Slide Number 2
	Agenda
	Slide Number 4
	Masquerade
	Slide Number 6
	Why Probe?
	Why Probe?
	Slide Number 9
	Where we came from
	Where we ended up on X86
	“Unified” Extensible Firmware Interface
	Slide Number 13
	VMware, VirtualBox, KVM
	Microsoft Hyper-V
	Slide Number 16
	Developing on VM’s
	Slide Number 18

