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X86 Heritage
Where did this architecture come from?



X86 Development Timeline
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New Design vs. Extensions
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And boy, did this present us with challenges…

Booting
•Boot Processor put in 64-bit mode by 
Firmware

•Additional processors halted in 16-bit real 
mode

Legacy hardware
•Multiple ways to deal with timers, interrupts, 
etc.



Processor Modes
Today, I’d like to be…



All modes are still there

• For compatibility reasons, all processor modes going back to the 8086 are still 
present in modern processors
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16 and 32 bit modes on X86
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These are not the modes 
you’re looking for.
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Architecture Documentation
What is this chip, and what does it do?



We need documentation

• When you’re writing – or porting – an operating system, you need to know a 
lot about the underlying platform

• So, we need documentation
• VAX: VAX-11 Architecture Reference Manual
• Alpha: Alpha AXP Architecture Reference Manual
• Itanium: Intel Itanium Architecture Software Developer’s Manual
• X86-64: Intel 64 and IA-32 Architecture Software Developer’s Manual
• Here’s what this looks like…
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ISA Extensions

20

Name First in Function
x87 8086+8087 (1980) Floating Point Co-processor
PM 80286 (1982) Protected Mode: Virtual Memory
IA-32 80386 (1985) 32-bit
PAE Pentium Pro (1995) Physical Address Extension
MMX Pentium MMX (1997) MultiMedia Extension (Integer SIMD)
3Dnow! AMD K6-2 (1998) 3D Graphics (Floating Point SIMD)
SSE(n) Pentium III (1999) Streaming SIMD Extensions (FP SIMD)
x86-64 Opteron (2003) 64-bit
VT-x Pentium 4 (2005) Virtualization support
AMD-V Athlon 64 (2006) Virtualization support
AES-NI Westmere (2010) Advanced Encryption Standard
AVX(n) Sandy Bridge (2011) Advanced Vector Extensions (FP SIMD)
TSX Haswell (2013) Transactional Synchronization Extension
MPX Skylake (2015) Memory Protection Extensions



Some panned out

VT-x and AMD-V
•Help us run on hypervisors with near-bare-
metal performance

PCIDs (not on list) 
•Help us overcome part of the performance 
loss from mode changes



Intel TSX
Transactional Synchronization Extensions



The problem with locks

• One of the most difficult things to get right in a multi-threaded application (or 
OS) is synchronization between threads and processors

• Simultaneous memory access leads to conflicts (reading partially stale data, 
partial writes)

• Most common mechanism to overcome these issues is locking
• Locking is expensive
• Even when the lock is free, it is still taken
• Trade-off: simplicity (coarse locking) vs performance (fine-grained locking)
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Intel TSX

• TSX aims to eliminate locking by exploiting the CPU’s local data cache.
• During a TSX transaction, writes are only visible to the local CPU, they are 

not written to memory, and are not seen by the other CPU’s.
• After a TSX transaction, the memory writes that occurred during the 

transaction become visible to the other CPU’s atomically, and are then written 
to memory.

• During a TSX transaction, the CPU monitors memory writes by other CPU’s. 
If a memory write by another CPU conflicts with a memory write or read from 
this CPU, the transaction is aborted (the memory writes are thrown away and 
never seen by anyone).

24



Spinlock example
No TSX:

 xorl %ecx, %ecx 
    incl %ecx 
spin_lock_retry: 
    xorl %eax, %eax
    lock; cmpxchgl %ecx, (lock) 
    jnz spin_lock_retry 
    
    incl (value)

    movl $0 (lock) 

    ret 

TSX:
    xbegin retry_with_spinlock
    incl (value)
    xend

    ret

retry_with_spinlock:
    xorl %ecx, %ecx 
    incl %ecx 
spin_lock_retry:
    xorl %eax, %eax 
    lock; cmpxchgl %ecx, (lock) 
    jnz spin_lock_retry 
    
    incl (value)

    movl $0 (lock) 

    ret 25



Some Observations (1/2)

• TSX debuted in Haswell, subsequently removed by a microcode update 
because of a bug, and re-introduced in late Broadwell steppings and Skylake. 

• With TSX (either HLE or RTM), locking becomes very fine-grained when there 
are no conflicts. Fallback traditional locks can therefore be less fine-grained 
without too much of an impact on performance.

• Transactions can be nested (but abortions are passed up).
• Granularity of conflict detection is implementation specific, and probably 

equal to the size of a cache line (64 bytes in Skylake).
• There is an implementation specific limit to the number of cache lines that can 

be involved in a transaction (512 cache lines in Skylake). If this limit is 
exceeded, the transaction will abort. Limited associativity of cache lines may 
cause an abort even before this limit is reached.
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Some Observations (2/2)

• A context switch will also lead to aborted
transactions.

• The risk of an abortion grows with the 
transaction size, even without any conflicts.

• Therefore, fallback code must always be 
provided. This code needs to use a traditional lock, in case more than one 
thread needs to fall back.

• When an abortion happens in RTM, the fallback code is informed of the 
reason for the abortion, this can be a conflict, an explicit XABORT 
instruction, a lack of resources, the execution of an incompatible 
instruction, or the occurrence of an uncommon event (whatever that may 
be). 27



Possible Uses in OpenVMS

• I/O locks
• Scheduling lock
• Interlocked queue operations
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TSX

Prototyped queue instructions

•Better performance
•Ran in callers’ mode

And then TSX was cancelled and 
removed from chips (again!)



Register Set



VAX Register Set
R0
R1
R2
R3
R4
R5
R6
R7
R8
R9

R10
R11

AP/R12
FP/R13
SP/R14
PC/R15

PSL
IPR’s



Alpha Register Set
R0
R1
R2
R3
R4
R5
R6
R7
R8
R9

R10
R11
R12
R13
R14
R15

PC
PS

IPR’s

R16
R17
R18
R19
R20
R21
R22
R23
R24

AI/R25
RA/R26
PV/R27

R28
FP/R29
SP/R30
RZ/R31

F0
F1
F2
F3
F4
F5
F6
F7
F8
F9

F10
F11
F12
F13
F14
F15

F16
F17
F18
F19
F20
F21
F22
F23
F24
F25
F26
F27
F28
F29
F30
F31



Itanium Register Set
RZ/GR0

GR1
GR2
GR3
GR4
GR5
GR6
GR7
GR8
GR9

GR10
GR11
GR12
GR13
GR14
GR15

IP
UM

IPR’s

GR16
GR17
GR18
GR19
GR20
GR21
GR22
GR23
GR24
GR25
GR26
GR27
GR28
GR29
GR30
GR31

F16
F17
F18
F19
F20
F21
F22
F23
F24
F25
F26
F27
F28
F29
F30

FR127

GR32-
GR127

Reg. Stack

FR0
FR1
FR2
FR3
FR4
FR5
FR6
FR7
FR8
FR9

FR10
FR11
FR12
FR13
FR14
FR15

Pr127

Pr0
Pr1
Pr2
Pr3
Pr4
Pr5
Pr6
Pr7
Pr8
Pr9

Pr10
Pr11
Pr12
Pr13
Pr14
Pr15



x86 Register Set
RAX
RCX
RDX
RBX
RSP
RBP
RSI
RDI
R8
R9

R10
R11
R12
R13
R14
R15

RIP
RFLAGS

IPR’s

MMX0/FPR0
MMX1/FPR1
MMX2/FPR2
MMX3/FPR3
MMX4/FPR4
MMX5/FPR5
MMX6/FPR6
MMX7/FPR7

XMM0
XMM1
XMM2
XMM3
XMM4
XMM5
XMM6
XMM7
XMM8
XMM9

XMM10
XMM11
XMM12
XMM13
XMM15
XMM16



Dealing with fewer registers

C/Bliss
•No issues, compiler can take care of it

Assembly
•Some juggling required

VAX Macro (w/Alpha extensions)
•Alpha Pseudoregisters (per mode)



Instruction Encoding



VAX

37

O
pc

od
e 1 or 2 bytes, 1 

opcode per 
operation

[O
pe

ra
nd

 1
] 1 byte 

containing 
addressing 
mode and 
register 
number, up to 4 
bytes of 
displacement, 
immediate data, 
or address

[O
pe

ra
nd

 2
 …

 n
] same



Alpha
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O
pc

od
e 6 bits, one 

opcode per 
operation

O
pe

ra
nd

s 26 bits, encoding 
up to 3 registers, 
up to 21-bit 
displacement, 8-
bit literal value, 
up to 16-bit 
function specifier



Itanium
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Syllable
41 bits

Opcode
4 bits

Operands
31 bits, typically 10-bit 

function and 3 registers

Predicate
6 bits

Syll.

Opcode

Operands

Predicate

Syll.

Opcode

Operands

Predicate

Template
5 bits



X86-64

40

[P
re

fix
es

] 1-6 bytes 
specifying 
address and 
operand size 
override, 
extended register 
set, extended 
instruction set, 
locking, 
repetition, 
segment, branch 
hints

O
pc

od
e 1-3 bytes

Multiple opcodes 
per operation

[M
od

-R
/M

] 1 byte
specifying 
addressing mode 
and either 2 
registers or 1 
register + 3 bits 
opcode extension

[S
IB

] 1 byte
specifying scale 
factor, index and 
base registers for 
indexed 
addressing

[D
is

pl
ac

em
en

t] 1-8 bytes
specifying a 
displacement or 
offset

[Im
m

ed
ia

te
] 1-8 bytes

specifying an 
immediate value



Phew…

Compilers
•LLVM

Debugger etc.
•Open-source instruction decoders

Exception handling
•Manual labor



Memory Layout



Memory Layout

43

VAX Alpha Itanium x86
Address size 32 64 64 64
H/W page size 512 8K/64K/512K/4M 4K-4G 4K/2M/1G
Split VA Space - yes yes* yes
Regions - - 8 -
PT Levels 2 3 3* 4
PTE Cache - - VHPT PDE cache
Virt. Addr. Size 32 48 48* 48
Phys. Addr. Size 32 44 50 52 (48)
Physical 
addressing

yes yes yes -

Segmentation - - - yes (kind of)
Prot. Bits in TLB 4 enc[KESU][RW] 11 [KESU][RW], 

FO[RWE]
7 enc[KESU], enc[RWX] 3 R/W, U/S, XD

* OS Implementation Dependent, figures given are for OpenVMS



The Case for SWIS
What is SWIS, and why is it needed?



OpenVMS Assumes Things…

• VAX/VMS was designed in tandem with the VAX hardware architecture.
• Where desirable, hardware features were added to satisfy the OS’ needs.
• A lot of OS code was written to make use of these hardware features.
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What are these Assumptions?
• 4 hardware privilege modes
• Each with different page protections
• And with their own stack
• 32 Interrupt Priority Levels
• 16 for Hardware Interrupts
• 16 for Software Interrupts
• Software Interrupts are triggered immediately when IPL falls below the 

associated IPL
• Asynchronous Software Trap (AST) associated with each mode, triggered 

immediately when IPL falls below ASTDEL (equally or less privileged mode)
• The hardware provides atomic instructions for queue operations
• The hardware provides a set of architecturally defined Internal Processor 

Registers (IPRs) 46



How does Alpha meet these Assumptions?

• Alpha is a very clean RISC Architecture
• But OpenVMS was definitely in the Alpha Architecture designers’ minds 
• The 4 modes OpenVMS needs are part of the basic Alpha architecture
• PALcode, code supplied by firmware that has more privileges than even kernel 

mode, and which is uninterruptible, provides the flexibility to implement OS 
specific features

• IPLs, Software Interrupts and ASTs are implemented through a combination of 
hardware support and PALcode

• Atomic queue instructions are provided by PALcode 
• PALcode also provides the mapping from IPRs as expected by OpenVMS to 

the hardware implementation’s IPRs 
47



So how about Itanium Hardware?

• Very different story, Itanium’s design was finished before OpenVMS as an OS 
was considered

• Offers the 4 modes OpenVMS needs
• The TPR (Task Priority Register) provides an IPL-like mechanism for hardware 

interrupts only
• No compatible software interrupt mechanism or ASTs
• No atomic queue instructions
• No OpenVMS-compatible IPRs
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Hence, SWIS

• SWIS (Software Interrupt Services) is a piece of low-level OS code that is 
involved in mode changes.

• SWIS implements the software interrupt and AST support required by 
OpenVMS, using hardware support as available.

• Other code in the OS (with some special support from the SWIS code to 
ensure atomicity) provides atomic queue instructions

• A combination of code in SWIS and other code in the OS provides OpenVMS-
compatible IPRs

• SWIS makes the Itanium CPU look more like a VAX to the rest of the OS

49



Bridge Function
SWIS bridges the gap between the assumptions made by the rest of the OS to 
the features supported by the hardware

50

ASTs Software 
Interrupts

Context 
Switching

Memory 
Management



SWIS on X86-64
• Because a similar mismatch exists between OpenVMS’ assumptions and the 

hardware-provided features, SWIS will be ported to X86-64.
• Ported means mostly re-written here, as the provided features are very 

different between Itanium and X86-64.
• On X86-64, SWIS will have to do more, as the X86-64 architecture does not 

provide the 4 mode support OpenVMS needs.
• Because of this, SWIS on X86 will not only be active when transitioning from 

an inner mode to an outer mode, but also when transitioning from an outer 
mode to an inner mode.

• Also because of this, SWIS now needs to become involved in memory 
management (in a supporting role).

• There’s good news too: the Itanium architecture has some features that are 
very complex to manage (think RSE), that are absent in X86-64.
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Swis on X86-64
OpenVMS Expects:
• 4 Modes, different page protections, 

separate stacks
• 32 IPLs (16 h/w, 16 s/w)

• Software interrupts tied to IPLs

• Per-process, per-mode ASTs, 
delivered when below ASTDEL

• Atomic queue instructions
• VAX-like IPRs

X86-64 Offers:
• 2 rings, different page protections, 

separate stacks
• 14 hardware TPR’s, mask off 

hardware interrupts in groups of 16
• Software interrupts unaffected by 

TPR’s. No IPL’s
• No AST-like concept at all

• No atomic queue instructions
• X86-64 IPRs
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Itanium vs X86-64
Differences relevant to SWIS 
between Itanium and X86-64



System Services
Itanium:
• EPC Instruction
• Can only be called within a protected 

promote page
• First instruction executed in kernel 

mode is the one following the EPC 
instruction

• Does not disable interrupts

• Need to consider register stacks

X86-64:
• SYSCALL Instruction
• Can be called anywhere

• First instruction executed in kernel 
mode is at a fixed, OS-determined 
(MSR) address

• Can be set up to atomically disable 
interrupts

• No register stack
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Interrupts and Exceptions
Itanium:
• IVT is code

• Does not switch stacks

• Interrupted state is stored in 
registers

• Need to consider register stack

X86-64:
• IDT contains descriptors that points 

at code
• Switches to kernel-mode stack if 

needed
• Interrupted state is stored on 

kernel-mode stack
• No register stack
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Memory Management
Itanium:
• 4 modes
• OS needs to handle an exception on 

TLB miss
• Memory translations are at the OS’ 

discretion (Translation Registers)
• Support for URKW and similar 

protections
• 8 261 byte regions in VA

X86-64:
• 2 useable rings (0 and 3)
• Processor walks page tables on 

TLB miss
• All memory translations are page-

table based
• No support for ring 3 read, ring 0 

write
• No regions
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Finding Per-CPU SWIS Data Structure
Itanium:
• Mapped through a dedicated TR

• At fixed VA (0xE…0)
• Mapping of VA to PA is different on 

each processor, and TR is not 
touched on a context switch 

X86-64:
• Mapped through the normal page 

tables
• At a different VA for each CPU
• Mapping of VA to PA is identical for 

each process, so it doesn’t change 
on a context switch

• Can be found at address 0 in the 
%GS segment on each CPU

• %GS segment is loaded from 
segment descriptor 0x28 on each 
CPU

• Segment 0x28 base VA is different 
on each CPU
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Finding the Per-CPU SWIS Data Structure (2)
Itanium:
• Accessing a field at offset 0x80:
movl r28 = 0xe0000…0080
ld8 r28 = [r28]

• Getting the address of the structure:
movl r28 = 0xe0000…0000

X86-64:
• Accessing a field at offset 0x80:
movq %gs:0x80, %rax

• Getting the address of the structure:
rdgsbase %rax
– or –
movq %gs:0, %rax
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Porting SWIS
The porting process, a birds-eye overview



Design Phase

SWIS for X86-64 was designed over a period of 1.5 years (1 year part-time, 0.5 
years full-time), in several phases:
• Basic design (not detailed enough to base implementation on)
• Detailed design for System Service dispatching
• Detailed design for Hardware Interrupt and Exception handling
• Detailed design for Software Interrupts and ASTs
• Detailed design for Processes and Kernel Threads

60



Design Review Phase

• Partial reviews as the design progressed
• In-depth 3-day review between myself and

Burns Fisher
• This one turned up a design flaw that could 

have enabled unprivileged code to bring down the system
• Complete walk-through and review in one of our weekly X86-64 engineering 

meetings
• A lot of the content in this presentation is based on the slides I prepared for 

that walk-through
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Implementation Phase

Implementation started in May 2017, broken down into different parts:
• Quick and Dirty Exception Handling for early code that needs something
• Data Structure Definitions
• VAX/Alpha IPRs
• Hardware Interrupts and Exceptions
• System Services
• Software Interrupts
• ASTs
• Initialization
• Processes and Scheduling
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2 SYSTEM_PRIMITIVES execlet builds

• Compatibility build, works on any x86-64 CPU we support
• Performance builds, optimized for CPUs that have support for one or more of 

the following:
1. Address Space Numbers (PCIDs) in TLB
2. RDGSBASE instruction
3. XSAVES/XRSTORS instructions for saving/restoring extended (“floating point”) registers 

(MMX, SSE, AVX)
• Highest Performance build targets Intel processors made after 2013 (Ivy 

Bridge and beyond).
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The Guts of SWIS
A technical overview, with lots of details



SwInt and AST Delivery

Return address in 
xswis $call _o_ast

KERNEL STACK AST DELIVERY STACK

ADBSSENTRY

Return address in 
xswis $syscall _entry
Return address in 

swis $deliver _swints
Return address in 
swis $deliver _asts

Call SYS $ service
.
.
.

User Image

P0 Space System Space

SYS $service :
Load SS number in %R10
SYSCALL

SS Transfer Routine
XSWIS $SYSCALL _ ENTRY :
Build SSENTRY frame
Copy 7th ...n th arguments
Call EXE $service

EXE $ service :
.
.
.
RETCall 

SWIS $DELIVER _SWINTS

SWIS $ DELIVER _SWINTS
Find software interrupt 
to dispatch
Call through IDT

software -interrupt -
routine :
.
.
RET

Remove ACB from queue
Build ADB on outer mode 
stack

.
Call SWIS $DELIVER _ASTS

SWIS $DELIVER _ASTS :

Set SP to SSENTRY frame
Set ASTDEL flag in 
SSENTRY frame
Move SSENTRY frame
SYSRET

XSWIS $ CALL _O _AST :

(return from AST )

Remove SSENTRY frame

RET

SYSRET

Call EXE $CLRAST _MODE
Call SWIS $DELIVER _ASTS

Kernel ModeOuter Mode

SCH $ASTDEL _U _S:
Find AST to dispatch
Call through IDT

XSWIS $DELIVER _O _AST :

Call 
XSWIS $DELIVER _ O_AST
RET

RET

ASTDEL

SSENTRY
ASTDEL

XSWIS $SYSCALL _ ENTRY :

Load 0 into %R 10
SYSCALL

ast _routine :
Call ast -routine.

.
RET



Mode “Components”

• Processor ring (0 for K, 3 for ESU)
• Stack pointer
• Address Space Number
• Page Table Base
• Current mode as recorded in the SWIS data structure

• A mode is “canonical” when all the above are in agreement
• SWIS should be the only code that ever sees non-canonical modes

• We prototyped this on Itanium
66



Basics of Mode Switching

• Interrupt or SYSCALL instruction
1. Switches CS and SS to ring 0
2. Switches to the kernel-mode stack (interrupt only, not SYSCALL)
3. Disables interrupts
• Get fully into kernel mode (ASN, PTBR, stack, DS, ES)
• Going in? -> Build return frame on stack
• Going out? -> Deliver SwInts and ASTs as needed
• Get into destination mode (ASN, PTBR, stack, DS, ES)
• IRET or SYSRET instruction
1. Switches CS and SS to ring 3
2. Switches to the outer-mode stack (IRET only, not SYSRET)
3. Enables interrupts 67



Context Switching

• Need to save/restore 4 PTBRs instead of 1
• MMX/SSE/AVX state will get saved using the XSAVE(S)/XRSTOR(S) 

instructions
• Need to deal with performance monitoring and debugging registers
• Will have a “never scheduled” flag for initial process/thread creation (Alpha 

uses canonical stack, Itanium uses the PFS register)  On first scheduling, 
the stacks get zapped, and we go to the appropriate initialization routine for 
the process/thread.
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So how close were we?
Pretty close

We missed a few things though
•Impact of not having a PROBE instruction
•Need to deal with emulated Alpha registers
•Use of interrupt stacks
•Need to track where the kernel stack is to detect a KSNV

And we made some improvements
•Lightweight system services
•All SWIS variants in a single image



To learn more please contact us:
vmssoftware.com
info@vmssoftware.com
+1.978.451.0110

Thank You
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