BEE VMS Software

OpenVMS Across
Four Architectures

A Trip Down Memory Lane

Berlin, April 2024

Camiel Vanderhoeven | Chief Architect & Strategist

nma Software

Comparing Architectures

Camiel Vanderhoeven | SEP-2017

nwa Software

Comparing Architectures Teaching a Not-So-0ld

Dog New Tricks

Camiel Vanderhoeven | SEP-2017

N ' l
uma Software

INnfroduction 1o the x86
Architecture

Camiel Vanderhoeven | SEP-2017

nwa Software

Camiel Vanderhoeven

Interesting Features of
the X86-64 Architecture

Camiel Vanderhoeven | SEP-2017

September 15, 2015

htlslHeritage

Whe architecture come from?

X86 Development Timeline

New Design vs. Extensions

o04-bit
ltanium

And boy, did this present us with challenges...

*Boot Processor put in 64-bit mode by
Firmware

* Additional processors halted in 16-bit real
mode

Legacy hardware

* Multiple ways to deal with timers, interrupts,
etc.

BER VMS Software

All modes are still there

* For compatibility reasons, all processor modes going back to the 8086 are
IN modern processors

and 32 bit modes on X86

Processor that Mode application Real 16-hit 32-bit 6d-bit
introduces was written for Protected Protected Mode

each mode Mode Mode Mode

AMD Opteron

Intel B03865L r

Intel 803860DX

Intel 80286

INntel 8086

11

FProcessor that

iNntroduces
each mode

AMD Opteron

INntel BO3865L

Intel 803860DX

INntel BOZ286

Intel 8086

Mode application
wWas written for

System
Management
Mode

<«»

Real 16-hit 32-hit 6d-hit
Protected Protected Mode
VMode Mode Mode
Long Mode

Compati

Legacy Mode

Virtual
8086
Mode

‘ FProtected Mode

m
'H""‘!‘

2

T Y Documentation

We need documentation

* When you're writing — or porting — an operating system, you need to
about the underlying platform

* S0, we need documentation

* VAX: VAX-11 Architecture Reference Manual

» Alpha: Alpha AXP Architecture Reference Manual

 [tanium: Intel Itanium Architecture Software Developer's Manual

» X386-64: Intel 64 and |A-32 Architecture Software Developer's Manual
* Here's what this looks like...

14

-~

Y iV 1UI I_t— id —l—n:._cm—_-m Preliminary Edition Volume1 Golde

WRL

QATE
G633
199

J0O63

Wilkes

ABBEVILLE

e

B R e A B S L L i g e e o e)

i _
Sl &
M k
il 1O
i i1 N
L rb ik ! =
| fi8 | 2 .
¥ |
m Lk & O g
'y p w
| A . @« =
L ¢ .. *
! i/188: 3 s
p I -

ATT—

a L

T P TR ey TR T

i e

=

-l
o
o
WJ
L
-
-
b
@)
-
[==
(+ 5
£
S
L
]
<
[~a
(o]
>
<
Q

i et L

s e R p——

INSIDE THE PERSONAL COMPUTER

<

4 7 e ..ub-!-_...r..owl T U e D T % D A

NOSI¥YYH
e , . : NILYYW

e

oy
W

e na iy S] o e e e 1
e L el e
P e M gt AT I P] £ - -
el L T e e
R -~ S =i = -
I W S T o M e) i b 75 5 L [o o e B £

T X) v
T _ L Swoatme =
*UB-866-826° a Sweetman g
» . . ©/ -

n

(NI
HHHHHMHH@!W

«928-999-8N.
88

«Z08-

CADDISON
WesLEy

Il

| ———
A e e T e I e S

5

i . Y Y T

O T T

S e sy ik T T i A i

¥ . = ' =— - '.'I. -y = =0
R T e e A AT S S v B RS T T
ST VAR - =

e il RN 1 P i, 6) (ot i (o

e Y RS SO I—__--—_";-‘_',l;.—_z.;\-‘:’_w e i e e oA b '-h-—__r\’L-‘lzcl.Ena:-r'LﬂFb_—' S A b i

&
7

he =
e

-a--od..{ - — e we o
woutpy Advuarjadg

[ausmjiy

SAIMINIIS IL(] pue SewINU 6A T/

INSIDE THE PERSONAL COMPUTER (rrorvecune) ABBEVILLE

BIRTH OF THE COOL BES F BLUE NOTE

A

e .

DAVID BAILEY BIRTH OF THE COOL

STUDIO
WITR

MARTIN
HARRISON

|
!

TR LY .

v

CADDISON
WesLEY

[Em

L

.gzg-gga'an-
»209°88/-3 .
LTI 11‘}} |

il

£ LRl If
I jie=s S,

-’

=

‘-1. _-Ai' T

Ty

T R A A D R S S e R LIRS S i o ST Sy RN = A SN P S R 5
e e A e) S T e i — = e T | e Y e s >

T = Ee . v e mat o —

g e i i e
r—

i il
S 7 PP B e S L g Yo 2
n adi ity LT T

NOLIp Y RAvunsis)ad

T AT T s viper gy s

[aarnpoq

$AMINNG eye(pue sjewnu] 6A I/SLSY

INSIDE THE PERSONAL COMPUTER (rrorurcuie) ABBEVILLE

BIRTH OF THE COOL BEST OF BLUE NOTE

T e i

— i T — S—

ILEY BIRTH OF THE COOL/ Z2

_'-l—__‘-_ :w !’
22 DAVID B

: = 7 =

: o

TEEEEE

Preliminary Edition Volume 1 Golde

L gt .‘,.?._]._ e A 3 PP PRpCis ..T-...T..-L.!._lu...t.ﬁ . —
——— e e — oy ——— 2 -!.I.__L. =

wm,_,m EV9 Esam_m and Data mz__nzﬁm

’ e R - s proe
o g e —— ey W T ——

1
i
]

. ..__

L

\ & AR
,._..w,.....r..r_..,,.tr?,r S

olants |
A

o
£

]
n X |
< <!
e ,..A
> :
wl
(s8]
s}
o
AT
(
! E .
| m F
| = : e
| QO v P
T. a o0 .
= :
i 3 .
I O m
(| B " :
@ ;
-
—
- - E—
m 1 i
\

21232y 195 WONAISUL § RO

N~8§§:»§§3§§5§_%§

AN washs 2 swnjop

22 UoIsinay [enuey| 5 2d0janaq 2J1emijS UMDY el Jauu|

DAVID BAILEY BIRTH OF THE COOL

o=
x
=
v
AY
=
=
x
T
0
y 4
=
0
[5
x
Pl
X
s
e
I
=
0
=

NOSINYVH
NILYYW

INIIRDIY voEddy || Bwnjop
22 gﬁﬁzﬁ&&&ﬁﬁﬁg.ﬁsg_

_,_____H_E_U Architecture :
* REFERENCE MANUAL

:
7
:

z
Z
E
-

FUETIEum

' *UB-8656-826" L
o,

74

Preliminary Edition Volume 1 Golde

S T

- o — -— =-— — B 41._-...

wmam E 5 Internals and Data Structures

i e

e

F_’:\

N\TAN /\N/AAN

Inted® Architecture Instruction & 58l Extensions Pro

Intel Corporation

Intek® 64 and (A-32 An timizabon Referend

Intel® 64 and IA-32 Architectures Software Developer's Manual, Volume 3C: System Programming Guide, Part 3 Intel Corporation

intel® 64 and 1A-32 Archileclures Software Developer's Manual, Volume 3B, Syslem Programming Guide, Part 2 Intel Corporation

ABBEVILLE

BEST OF BLUE N

Intek® 64 and I1A-32 Architectures Software [per's Manual, Volume 3A. System Programming Guide, Par 1 intel Corporation

" A POP-UP GUIDE)

Intel® 64 and 1A-32 ures Software De,..“.,..—.r Manual Volume 2C Instruction Sel Relerence

BIRTH OF THE COOL

Intel® 64 and IA-32 Architectures Software Developer's Manual, Volume 28: Instruction Set Reference N-Z Intel Corporation

Inlek® 64 and |A-12 Archilectures Sofware Developer's Manual Volume ZA Instruction Sel Reference A-M Intel Corparation

r tel Corporation
riedl 64 and |1A-37 Architectures Softwiare Developer's Manual V Intel Corporator

aiajay 195 worns § o Q

| 22 orsinay [enuely sadofanaq asemyjos MY wnjuey] jaju| r—

ANDARDIY Walshs 7 swnop e

_ 22 worsAy [enUeid $4d0[ana() 21215 UMY WIUEY J31u) =

INSIDE THE PERSONAL COMPUTER

NOSINYYH
NILUYW

DAY voneddy | swnjop

22 UoIsinay _m___.azu._&o_oanmmg -.nﬁoszE(.E:wa_._._oE_

p_____m AXP Architecture
* REFERENGE MANUAL

B

SITES WITEI(

Z -
% 3
g8
8
ez

p._. LNLT Iy | : m w.—\._.b Sweetman

4

ISA Extensions

X87

PM
|A-32
PAE
MMX
3Dnow!
SSE(n)
X86-04
VT-x
AMD-V
AES-NI
AVX(n)
TSX
MPX

8086+8087 (1980)
80286 (1982)

80386 (1985)
Pentium Pro (1995)
Pentium MMX (1997)
AMD K6-2 (1998)
Pentium [l (1999)
Opteron (2003)
Pentium 4 (2005)
Athlon 64 (2006)
Westmere (2010)
Sandy Bridge (2011)
Haswell (2013)
Skylake (2015)

Floating Point Co-processor

Protected Mode: Virtual Memory

32-bit

Physical Address Extension

MultiMedia Extension (Integer SIMD)
3D Graphics (Floating Point SIMD)
Streaming SIMD Extensions (FP SIMD)
64-bit

Virtualization support

Virtualization support

Advanced Encryption Standard
Advanced Vector Extensions (FP SIMD)
Transactional Synchronization Extension
Memory Protection Extensions

20

Some panned out

V1-x ana AMD-V

*Help us run on hypervisors with near-bare-
metal performance

PCIDs (not on list)

*Help us overcome part of the performance
loss from mode changes

BEB VMS Software

N
BICH [SX

TranSynchronization Extensions

s g

The problem with locks

* One of the most things to get right in a multi-threaded application (or
0S) is between threads and processors
» Simultaneous memory access leads to (reading partially stale data,

partial writes)
 Most common mechanism to overcome these issues iIs
* Locking is
« Even when the lock Is free, it is still taken
* Trade-off: (coarse locking) vs (fine-grained locking)

23

Intel TSX

TSX aims to by exploiting the CPU’s local data cache.

During a TSX transaction, writes are to the local CPU, they are
not written to memory, and are by the other CPU'’s.

After a TSX transaction, the memory writes that occurred during the
transaction become visible to the other CPU’s , and are then written
to memory.

During a TSX transaction, the CPU memory writes by other CPU’s.
If a memory write by another CPU conflicts with a memory write or read from
this CPU, the transaction is (the memory writes are thrown away and
never seen by anyone).

24

Spinlock example

No TSX:

Xorl %ecx, %ecx

incl %Secx

spin lock retry:
Xxorl %Teax, %seax
lock; cmpxchgl %ecx,

Jnz spin lock retry
incl (value)
movl SO (lock)

ret

(Lock)

25

TSX:

Xbegin retry with spinlock

incl (value)
xend

ret

retry with spinlock:
Xorl %ecx, %secx
incl %Secx
spin lock retry:
Xorl %eax, %seax
lock; cmpxchgl %ecx,

Jnz spiln lock retry
incl (value)
movl SO (lock)

ret

(lock)

Some Observations (1/2)

e TSX iIn Haswell, subsequently by a microcode update
because of a bug, and In late Broadwell steppings and Skylake.

« With TSX (either HLE or RTM), locking becomes very fine-grained when there
are no conflicts. Fallback traditional locks can therefore be

* Transactions can be (but abortions are passed up).

» Granularity of conflict detection is , and probably
equal to the size of a cache line (64 bytes in Skylake).

* There is an implementation specific to the number of cache lines that can
be involved in a transaction (512 cache lines in Skylake). If this limit is
exceeded, the transaction will . Limited associativity of cache lines may
cause an abort even this limit Is reached.

26

Some Observations (2/2)

EEEEEE

e A will also lead to aborted
transactions.

* The of an abortion grows with the
, even without any conflicts | .
* Therefore, must always be " iranssction size (cache Lines
provided. This code needs to use a , In case more than one
thread needs to fall back.

* When an abortion happens in RTM, the fallback code is informed of the

reason for the abortion, this can be a S an XABORT
instruction, a lack of - the execution of an
, or the occurrence of an (whatever that may

be). 27

Possible Uses in OpenVMS

* |/O locks
» Scheduling lock
* [nterlocked queue operations

28

TSX

Prototyped queue instructions

* Better performance
*Ran in callers’ mode

And then TSX was cancelled and

removed from chips (again!)

BEB VMS Software

Register NN

VAX Register Set

R1 IPR'’s
R2

R3
R4
R5
R6
R7
R8
R9
R10
R11
AP/R’
FP/R’
SP/R’
PC/R’

o B WD

Alpha Register Set

R16 PC FO F16
R1 R17 PS F1 F17
R2 R18 IPR'’s F2 F18
R3 R19 F3 F19
R4 R20 F4 F20
RS R21 F5 F21
R6 R22 FG F22
R7 R23 F7 F23
R8 R24 F8 F24
R9 Al/R25 F9 F25
R10 RA/R26 F10 F26
R11 PVIR27 F11 F27
R12 R28 F12 F28
R13 FP/R29 F13 F29
R14 SP/R30 F14 F30
R15 RZ/R31 F15 F31

Itanium Register Set

RZ/GRO GR16 IP RO Pr0
GR1 GR17 GR32. UM "R r1
GR2 GR18 GR127 IPR’s -R2 Pr2
GR3 GR19 Reg. Stack -R3 Pr3
GR4 GR20 -R4 Pr4
GR5 GR21 -RS Prd
GR6 GR22 -R6 Pré
GRY GR23 -R7 2r(
GRS GR24 -R8 °r8
GR9 GR25 -R9 °r9
GR10 GR26 FR10 Pr10
GR11 GR27 FR11 Pr11
GR12 GR28 FR12 Pr12
GR13 GR29 FR13 Pr13
GR14 GR30 FR14 Pr14
GR15 GR31 FR15 Pr15

FR127 Pr127

X806 Register Set

RAX
RCX
RDX
RBX
RSP
RBP
RSI
RDI
R8
R9

T2 TRA X
o A WON ~ O

MMXO/FP
MMX1/FP
MMX2/FP
MMX3/FP
MMX4/FP
MMXS5/FP
MMX6/FP
MMX7/FP

R0
R1
R2
R3
R4
R5
R6

R7

XMMO
XMM1
XMM2
XMM3
XMM4
XMM5
XMMG6
XMMY7
XMM8
XMMS9
XMM~
XMM
XMM-
XMM
XMM-~
XMM

o 01 W N -~ O

RIP
RFLAGS
IPR'’s

Dealing with fewer registers

C/Bliss

*No issues, compiler can take care of it

Assembly

*Some juggling required

VAX Macro (w/Alpha extensions)

* Alpha Pseudoregisters (per mode)

BEB VMS Software

st Encoding

VAX

-

Opcode

1
O
O

or 2 bytes, 1
pcode per
peration

\’ /:' 1 byte

- containing
addressing
mode and

Q. register
number, up to 4
bytes of
displacement,
Immediate data,
or address

eran

[O

v &

v |

37

[Operand 2 ...

- = same

Alpha

Opcode

o bits, one
opcode per
operation

up to 3 registers,
up to 21-bit
displacement, 8-
bit literal value,
up to 16-bit

Operands

26 bits, encoding

function specifier

J &

/

Itanium

e r
41 bits Syl Syl 5 bits

Opcode

4 bits Opcode

Opcode

Operands
31 bits, typically 10-bit

Operands Operands

function and 3 registers

Predicate

6 bits Predicate

Predicate

39

X386-64

' —1-6 bytes [@ 1-3 bytes ‘—1 byte [—1 byte ' —1-8 bytes ' —1-8 bytes
) A . m . - Q
@) specifying '8 Multiple opcodes g specifying — specifying scale GC) specifying a +— specifying an
> address and &S per o £ (Y addressing mode (/) factor, index and displacement or .V immediate value
= | per operation . — : - 5
D operand size O 1_ and either 2 base registers for offset
= override, O _8 registers or 1 indexed Q O
D._'. extended register = register + 3 bits addressing S &
set, extended =, opcode extension el =
instruction set, N —
locking, —
repetition, Q.
segment, branch
o hlntS U (W U y . U /

40

Phew...

Compilers
LLVM

Debugger etc.

* Open-source instruction decoders

Exception handling

 Manual labor

BEB VMS Software

Memory Layout

Address size 32 64

H/W page size 512 8K/64K/512K/4M

Split VA Space - yes

Regions - -

PT Levels 2 3

PTE Cache - -

Virt. Addr. Size 32 48

Phys. Addr. Size 32 44

Physical yes yes

addressing

Segmentation - -

Prot. Bits in TLB 4 enc[KESU][RW] 11 [KESU][RW],
FO[RWE]

64
4K-4G
yes”
38

3
VHPT
48*

50
yes

7/ enc[KESU], enc[RWX]

* OS Implementation Dependent, figures given are for OpenVMS

43

64

4K/2M/1 G
yes

4

PDE cache
48

52 (48)

yes (kind of)
3 R/W, U/S, XD

TheCasefor BTN

OpenVMS Assumes Things...

« VAX/VMS was designed with the VAX hardware architecture.

 \Where desirable, to satisfy the OS’ needs.

A lot of OS code was written to these hardware features.
-

L
__ \\

"

What are these Assumptions?

* 4 hardware privilege modes

» Each with different page protections
* And with their own stack

» 32 Interrupt Priority Levels

* 16 for Hardware Interrupts

* 16 for Software Interrupts

« Software Interrupts are triggered when IPL falls below the
associated IPL

* Asynchronous Software Trap (AST) associated with each mode, triggered
when IPL falls below ASTDEL (equally or less privileged mode)

 The hardware provides instructions for queue operations
* The hardware provides a set of architecturally defined Internal Processor
Registers (IPRs) .6 uﬁa

How does Alpha meet these Assumptions?

* Alphais a very Architecture
* But OpenVMS was definitely in the Alpha Architecture designers’ minds
 The 4 modes OpenVMS needs are part of the basic Alpha architecture

 PALcode, code supplied by firmware that has than even kernel
mode, and which is , provides the to implement OS
specific features

* |PLs, Software Interrupts and ASTs are implemented through a combination of
hardware support and PALcode

* Atomic queue instructions are provided by PALcode

 PALcode also provides the mapping from IPRs as expected by OpenVMS to
the hardware implementation’s IPRs

47

So how about ltanium Hardware?

* Very different story, ltanium’s design was finished OpenVMS as an OS
was considered

» Offers the 4 modes OpenVMS needs

 The TPR (Task Priority Register) provides an IPL-like mechanism for hardware
interrupts only , I _

* No compatible software interrupt mechanism or ASTs
* No atomic queue instructions
* No OpenVMS-compatible IPRs

48

Hence, SWIS

« SWIS (Software Interrupt Services) is a piece of that is
Involved In .

« SWIS implements the software interrupt and AST support required by
OpenVMS, as available.

* Other code in the OS (with some special support from the SWIS code to
ensure atomicity) provides atomic queue instructions

* A combination of code in SWIS and other code in the OS provides OpenVMS-
compatible IPRs

« SWIS makes the Itanium CPU to the rest of the OS

49

Bridge Function

SWIS bridges the gap between the assumptions made by the rest of the OS to
the features supported by the hardware

50

SWIS on X86-64

 Because a exists between OpenVMS' assumptions and the
hardware-provided features, SWIS will be ported to X86-64.

» Ported means mostly re-written here, as the
between ltanium and X86-64.

« On X86-64, SWIS will have to do more, as the X86-64 architecture does
provide the 4 mode support OpenVMS needs.

» Because of this, SWIS on X86 will not only be active when transitioning from
an inner mode to an outer mode, but when transitioning from an outer
mode to an inner mode.

 Also because of this, SWIS now needs to become involved In
(in a supporting role).

* There's good news too: the Itanium architecture has some features that are
very complex to manage (think RSE), tspat are iIn X86-64.

Swis on X86-64

* 4 Modes, different page protections, » 2 rings, different page protections,
separate stacks separate stacks
32 IPLs (16 h/w, 16 s/w) * 14 hardware TPR’s, mask off
hardware interrupts in groups of 16
» Software interrupts tied to |IPLs » Software interrupts unaffected by
TPR’s. No IPL’s
» Per-process, per-mode ASTSs, * No AST-like concept at all
delivered when below ASTDEL
* Atomic queue instructions » No atomic queue instructions

* VAX-like IPRs » X386-64 IPRs

52

3181 R"AI X8 0-04

Diffelevant to SWIS

betweenAtanium and X86-64

System Services

Instruction Instruction
* Can only be called within a protected » Can be called
* First instruction executed Iin kernel * First instruction executed in kernel
mode Is the one the EPC mode Is at a . OS-determined
iInstruction (MSR)
* Does disable interrupts » (Can be set up to atomically disable
iInterrupts

* Need to consider register stacks register stack

54

Interrupts and Exceptions

o VT is * |IDT contains that points
at code

 Does switch stacks » Switches to kernel-mode stack if
needed

* |nterrupted state Is stored In * |nterrupted state Is stored on

* Need to consider register stack register stack

95

Memory Management

modes useable rings (0 and 3)
needs to handle an exception on walks page tables on
TLB miss TLB miss
 Memory translations are at the OS’ * All memory translations are
discretion () based
» Support for URKW and similar support for ring 3 read, ring O
protections write

« 8 251 byte regions in VA regions

56

Finding Per-CPU SWIS Data Structure

 Mapped through a

« At (OXE...0)

 Mapping of VA to PAis
each processor, and TR Is not
touched on a context switch

on

S7

Mapped through the

At a for each CPU

Mapping of VA to PA is for
each process, so it doesn’t change
on a context switch

Can be found at address O in the
on each CPU

%GS segment is loaded from
segment descriptor 0x28 on each

CPU

Segment 0x28 base VA is
on each CPU

Finding the Per-CPU SWIS Data Structure (2)

» Accessing a field at offset 0x80: » Accessing a field at offset 0x80:
movl r28 = 0xe0000..0080 movg %gs:0x80, %srax
1d8 r28 = [r28]

* (Getting the address of the structure: » (Getting the address of the structure:
movl r28 = 0xe0000..0000 rdgsbase %rax

movqg %gs:0, srax

58

ola gl] SWIS

The p‘ w 0rocess, a birds-eye overview

Design Phase

SWIS for X86-64 was designed over a period of 1.5 years (1 year part-time, 0.5
years full-time), in several phases:

design (not detailed enough to base implementation on)
» Detailed design for dispatching
» Detailed design for handling
» Detailed design for
» Detailed design for

60

Design Review Phase

I
| IlI
4 | .
[
II
|

+ Partial reviews as the design progressed =

* |n-depth 3-day review between myself and
Burns Fisher

* This one turned up a design flaw that could)
have enabled unprivileged code to bring down the system

 Complete walk-through and review in one of our weekly X86-64 engineering
meetings

* A lot of the content in this presentation is based on the slides | prepared for
that walk-through

61

Implementation Phase

Implementation started in May 2017, broken down into different parts:

Quick and Dirty Exception Handling for early code that needs something

Data Structure Definitions
VAX/Alpha IPRs

Hardware Interrupts and Exceptions
System Services

Software Interrupts

ASTs

Initialization <:|

Processes and Scheduling

62

&

-

=

2 SYSTEM PRIMITIVES execlet builds

» Compatibility build, works on any x86-64 CPU we support

* Performance builds, optimized for CPUs that have support for one or more of
the following:

1. Address Space Numbers (PCIDs) in TLB

2. RDGSBASE instruction

3. XSAVES/XRSTORS instructions for saving/restoring extended (“floating point”) reqgisters
(MMX, SSE, AVX)

* Highest Performance build targets Intel processors made after 2013 (lvy
Bridge and beyond).

63

Swint and AST Delivery

PO Space

User Image

SS Transfer Routine

Call SYS Sservice

SYS Sservice :
Load SS number in
SYSCALL

%R10_-

System Space

RET

ast _routine :

-

XSWIS SSYSCALL _ENTRY :
Build SSENTRX} frame

Copy 7 ...n arguments
Call EXE Sservice /
Call

KERNEL STACK AST DELIVERY STACK
SSENTRY v\\\ ADB
SR N1

Return address in
Xswis Ssvscall _entrv

Return address in

____swisSdeliver swints |

Return address in

RN
SSENTRY

E ASTDEL z

swis Sdeliver _asts

Return address in

EXE S service :

RET

SWIS SDELIVER _SWINTS

Call through IDT

XSWIS SSYSCALL _ENTRY :
(return from AST)

Call EXE SCLRAST _MODE
Call SWIS SDELIVER _ASTS |
Remove SSENTRY frame

SWIS S DELIVER _SWINTS
Find software interrupt
to dispatch /

Call SWIS SDELIVER _ASTS ~

xswis Scall_o_ast

software -interrupt -
routine :

RET

SYSRET

RET

XSWIS SCALL _O AST:
Call ast -routine
Load 0 into %R 10

SYSCALL

|
|
|
|
I
I
| e
|
|
I
|
|
|
|
I
|
|
|
|
I
I
|
|
|
|
I
-
e
|
I
|

I

SWIS SDELIVER _ASTS :

Call

RET

Find AST to dispatch
Call through IDT /

XSWIS SDELIVER _O_AST

=

SCH SASTDEL _U _S:
Remove ACB from queue
Build ADB on outer mode

stack
RET

XSWIS $DELIVER _O_AST:
Set SP to SSENTRY frame

Set ASTDEL flag in

SSENTRY frame

Move SSENTRY frame
SYSRET

Mode "Components’

* Processor ring (0 for K, 3 for ESU)

» Stack pointer

* Address Space Number

 Page Table Base

* Current mode as recorded in the SWIS data structure

A mode is “canonical” when all the above are in agreement
« SWIS should be the only code that ever sees non-canonical modes

* We prototyped this on ltanium

66

Basics of Mode Switching

1.
2.
3

Interrupt or SYSCALL instruction

Switches CS and SS toring O
Switches to the kernel-mode stack (interrupt only, not SYSCALL)
Disables interrupts

Get fully into kernel mode (ASN, PTBR, stack, DS, ES)
Going in? -> Build return frame on stack

Going out? -> Deliver Swints and ASTs as needed

Get into destination mode (ASN, PTBR, stack, DS, ES)

IRET or SYSRET instruction

Switches CS and SS toring 3
Switches to the outer-mode stack (IRET only, not SYSRET)
Enables interrupts 67

Context Switching

* Need to save/restore 4 PTBRs instead of 1

« MMX/SSE/AVX state will get saved using the XSAVE(S)/XRSTOR(S)
Instructions

* Need to deal with performance monitoring and debugging registers

* Will have a "never scheduled” flag for initial process/thread creation (Alpha
uses canonical stack, Itanium uses the PFS register) = On first scheduling,
the stacks get zapped, and we go to the appropriate initialization routine for
the process/thread.

68

So how close were we?

Pretty close

We missed a few things though

*Impact of not having a PROBE instruction

*Need to deal with emulated Alpha registers

*Use of interrupt stacks

*Need to track where the kernel stack is to detect a KSNV

And we made some improvements

Lightweight system services
* All SWIS variants in a single image

BEB VMS Software

N

nank hdeld

o learn more please contact us:
s .. vmssoftware.com

Info@vmssoftware.com
+1.978.451.0110

	Slide Number 1
	VAX, Alpha, Itanium and x86-64
	Slide Number 3
	X86 Heritage
	Slide Number 5
	Slide Number 6
	And boy, did this present us with challenges…
	Processor Modes
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Architecture Documentation
	Slide Number 14
	Filling a bookshelf…
	… VAX
	… VAX, Alpha
	… VAX, Alpha, Itanium
	… VAX, Alpha, Itanium, X86
	Slide Number 20
	Some panned out
	Intel TSX
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	TSX
	Register Set
	VAX Register Set
	Alpha Register Set
	Itanium Register Set
	x86 Register Set
	Dealing with fewer registers
	Instruction Encoding
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Phew…
	Memory Layout
	Slide Number 43
	The Case for SWIS
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Itanium vs X86-64
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Porting SWIS
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	The Guts of SWIS
	SwInt and AST Delivery
	Slide Number 66
	Slide Number 67
	Slide Number 68
	So how close were we?
	Thank You

