

VAX, Alpha, Itanium and x86-64
Comparing Architectures

Camiel Vanderhoeven SEP-2017

X86 Heritage
Where did this architecture come from?

X86 Development Timeline

5

New Design vs. Extensions

6

32-bit
VAX 64-bit

Alpha

64-bit
Itanium

16-bit
8086

286
PM

32-bit
i386

AMD64
64-bit

And boy, did this present us with challenges…

Booting
•Boot Processor put in 64-bit mode by
Firmware

•Additional processors halted in 16-bit real
mode

Legacy hardware
•Multiple ways to deal with timers, interrupts,
etc.

Processor Modes
Today, I’d like to be…

All modes are still there

• For compatibility reasons, all processor modes going back to the 8086 are still
present in modern processors

9

16 and 32 bit modes on X86

10

These are not the modes
you’re looking for.

11

12

Architecture Documentation
What is this chip, and what does it do?

We need documentation

• When you’re writing – or porting – an operating system, you need to know a
lot about the underlying platform

• So, we need documentation
• VAX: VAX-11 Architecture Reference Manual
• Alpha: Alpha AXP Architecture Reference Manual
• Itanium: Intel Itanium Architecture Software Developer’s Manual
• X86-64: Intel 64 and IA-32 Architecture Software Developer’s Manual
• Here’s what this looks like…

14

ISA Extensions

20

Name First in Function
x87 8086+8087 (1980) Floating Point Co-processor
PM 80286 (1982) Protected Mode: Virtual Memory
IA-32 80386 (1985) 32-bit
PAE Pentium Pro (1995) Physical Address Extension
MMX Pentium MMX (1997) MultiMedia Extension (Integer SIMD)
3Dnow! AMD K6-2 (1998) 3D Graphics (Floating Point SIMD)
SSE(n) Pentium III (1999) Streaming SIMD Extensions (FP SIMD)
x86-64 Opteron (2003) 64-bit
VT-x Pentium 4 (2005) Virtualization support
AMD-V Athlon 64 (2006) Virtualization support
AES-NI Westmere (2010) Advanced Encryption Standard
AVX(n) Sandy Bridge (2011) Advanced Vector Extensions (FP SIMD)
TSX Haswell (2013) Transactional Synchronization Extension
MPX Skylake (2015) Memory Protection Extensions

Some panned out

VT-x and AMD-V
•Help us run on hypervisors with near-bare-
metal performance

PCIDs (not on list)
•Help us overcome part of the performance
loss from mode changes

Intel TSX
Transactional Synchronization Extensions

The problem with locks

• One of the most difficult things to get right in a multi-threaded application (or
OS) is synchronization between threads and processors

• Simultaneous memory access leads to conflicts (reading partially stale data,
partial writes)

• Most common mechanism to overcome these issues is locking
• Locking is expensive
• Even when the lock is free, it is still taken
• Trade-off: simplicity (coarse locking) vs performance (fine-grained locking)

23

Intel TSX

• TSX aims to eliminate locking by exploiting the CPU’s local data cache.
• During a TSX transaction, writes are only visible to the local CPU, they are

not written to memory, and are not seen by the other CPU’s.
• After a TSX transaction, the memory writes that occurred during the

transaction become visible to the other CPU’s atomically, and are then written
to memory.

• During a TSX transaction, the CPU monitors memory writes by other CPU’s.
If a memory write by another CPU conflicts with a memory write or read from
this CPU, the transaction is aborted (the memory writes are thrown away and
never seen by anyone).

24

Spinlock example
No TSX:

 xorl %ecx, %ecx
 incl %ecx
spin_lock_retry:
 xorl %eax, %eax
 lock; cmpxchgl %ecx, (lock)
 jnz spin_lock_retry

 incl (value)

 movl $0 (lock)

 ret

TSX:
 xbegin retry_with_spinlock
 incl (value)
 xend

 ret

retry_with_spinlock:
 xorl %ecx, %ecx
 incl %ecx
spin_lock_retry:
 xorl %eax, %eax
 lock; cmpxchgl %ecx, (lock)
 jnz spin_lock_retry

 incl (value)

 movl $0 (lock)

 ret 25

Some Observations (1/2)

• TSX debuted in Haswell, subsequently removed by a microcode update
because of a bug, and re-introduced in late Broadwell steppings and Skylake.

• With TSX (either HLE or RTM), locking becomes very fine-grained when there
are no conflicts. Fallback traditional locks can therefore be less fine-grained
without too much of an impact on performance.

• Transactions can be nested (but abortions are passed up).
• Granularity of conflict detection is implementation specific, and probably

equal to the size of a cache line (64 bytes in Skylake).
• There is an implementation specific limit to the number of cache lines that can

be involved in a transaction (512 cache lines in Skylake). If this limit is
exceeded, the transaction will abort. Limited associativity of cache lines may
cause an abort even before this limit is reached.

26

Some Observations (2/2)

• A context switch will also lead to aborted
transactions.

• The risk of an abortion grows with the
transaction size, even without any conflicts.

• Therefore, fallback code must always be
provided. This code needs to use a traditional lock, in case more than one
thread needs to fall back.

• When an abortion happens in RTM, the fallback code is informed of the
reason for the abortion, this can be a conflict, an explicit XABORT
instruction, a lack of resources, the execution of an incompatible
instruction, or the occurrence of an uncommon event (whatever that may
be). 27

Possible Uses in OpenVMS

• I/O locks
• Scheduling lock
• Interlocked queue operations

28

TSX

Prototyped queue instructions

•Better performance
•Ran in callers’ mode

And then TSX was cancelled and
removed from chips (again!)

Register Set

VAX Register Set
R0
R1
R2
R3
R4
R5
R6
R7
R8
R9

R10
R11

AP/R12
FP/R13
SP/R14
PC/R15

PSL
IPR’s

Alpha Register Set
R0
R1
R2
R3
R4
R5
R6
R7
R8
R9

R10
R11
R12
R13
R14
R15

PC
PS

IPR’s

R16
R17
R18
R19
R20
R21
R22
R23
R24

AI/R25
RA/R26
PV/R27

R28
FP/R29
SP/R30
RZ/R31

F0
F1
F2
F3
F4
F5
F6
F7
F8
F9

F10
F11
F12
F13
F14
F15

F16
F17
F18
F19
F20
F21
F22
F23
F24
F25
F26
F27
F28
F29
F30
F31

Itanium Register Set
RZ/GR0

GR1
GR2
GR3
GR4
GR5
GR6
GR7
GR8
GR9

GR10
GR11
GR12
GR13
GR14
GR15

IP
UM

IPR’s

GR16
GR17
GR18
GR19
GR20
GR21
GR22
GR23
GR24
GR25
GR26
GR27
GR28
GR29
GR30
GR31

F16
F17
F18
F19
F20
F21
F22
F23
F24
F25
F26
F27
F28
F29
F30

FR127

GR32-
GR127

Reg. Stack

FR0
FR1
FR2
FR3
FR4
FR5
FR6
FR7
FR8
FR9

FR10
FR11
FR12
FR13
FR14
FR15

Pr127

Pr0
Pr1
Pr2
Pr3
Pr4
Pr5
Pr6
Pr7
Pr8
Pr9

Pr10
Pr11
Pr12
Pr13
Pr14
Pr15

x86 Register Set
RAX
RCX
RDX
RBX
RSP
RBP
RSI
RDI
R8
R9

R10
R11
R12
R13
R14
R15

RIP
RFLAGS

IPR’s

MMX0/FPR0
MMX1/FPR1
MMX2/FPR2
MMX3/FPR3
MMX4/FPR4
MMX5/FPR5
MMX6/FPR6
MMX7/FPR7

XMM0
XMM1
XMM2
XMM3
XMM4
XMM5
XMM6
XMM7
XMM8
XMM9

XMM10
XMM11
XMM12
XMM13
XMM15
XMM16

Dealing with fewer registers

C/Bliss
•No issues, compiler can take care of it

Assembly
•Some juggling required

VAX Macro (w/Alpha extensions)
•Alpha Pseudoregisters (per mode)

Instruction Encoding

VAX

37

O
pc

od
e 1 or 2 bytes, 1

opcode per
operation

[O
pe

ra
nd

 1
] 1 byte

containing
addressing
mode and
register
number, up to 4
bytes of
displacement,
immediate data,
or address

[O
pe

ra
nd

 2
 …

 n
] same

Alpha

38

O
pc

od
e 6 bits, one

opcode per
operation

O
pe

ra
nd

s 26 bits, encoding
up to 3 registers,
up to 21-bit
displacement, 8-
bit literal value,
up to 16-bit
function specifier

Itanium

39

Syllable
41 bits

Opcode
4 bits

Operands
31 bits, typically 10-bit

function and 3 registers

Predicate
6 bits

Syll.

Opcode

Operands

Predicate

Syll.

Opcode

Operands

Predicate

Template
5 bits

X86-64

40

[P
re

fix
es

] 1-6 bytes
specifying
address and
operand size
override,
extended register
set, extended
instruction set,
locking,
repetition,
segment, branch
hints

O
pc

od
e 1-3 bytes

Multiple opcodes
per operation

[M
od

-R
/M

] 1 byte
specifying
addressing mode
and either 2
registers or 1
register + 3 bits
opcode extension

[S
IB

] 1 byte
specifying scale
factor, index and
base registers for
indexed
addressing

[D
is

pl
ac

em
en

t] 1-8 bytes
specifying a
displacement or
offset

[Im
m

ed
ia

te
] 1-8 bytes

specifying an
immediate value

Phew…

Compilers
•LLVM

Debugger etc.
•Open-source instruction decoders

Exception handling
•Manual labor

Memory Layout

Memory Layout

43

VAX Alpha Itanium x86
Address size 32 64 64 64
H/W page size 512 8K/64K/512K/4M 4K-4G 4K/2M/1G
Split VA Space - yes yes* yes
Regions - - 8 -
PT Levels 2 3 3* 4
PTE Cache - - VHPT PDE cache
Virt. Addr. Size 32 48 48* 48
Phys. Addr. Size 32 44 50 52 (48)
Physical
addressing

yes yes yes -

Segmentation - - - yes (kind of)
Prot. Bits in TLB 4 enc[KESU][RW] 11 [KESU][RW],

FO[RWE]
7 enc[KESU], enc[RWX] 3 R/W, U/S, XD

* OS Implementation Dependent, figures given are for OpenVMS

The Case for SWIS
What is SWIS, and why is it needed?

OpenVMS Assumes Things…

• VAX/VMS was designed in tandem with the VAX hardware architecture.
• Where desirable, hardware features were added to satisfy the OS’ needs.
• A lot of OS code was written to make use of these hardware features.

45

What are these Assumptions?
• 4 hardware privilege modes
• Each with different page protections
• And with their own stack
• 32 Interrupt Priority Levels
• 16 for Hardware Interrupts
• 16 for Software Interrupts
• Software Interrupts are triggered immediately when IPL falls below the

associated IPL
• Asynchronous Software Trap (AST) associated with each mode, triggered

immediately when IPL falls below ASTDEL (equally or less privileged mode)
• The hardware provides atomic instructions for queue operations
• The hardware provides a set of architecturally defined Internal Processor

Registers (IPRs) 46

How does Alpha meet these Assumptions?

• Alpha is a very clean RISC Architecture
• But OpenVMS was definitely in the Alpha Architecture designers’ minds
• The 4 modes OpenVMS needs are part of the basic Alpha architecture
• PALcode, code supplied by firmware that has more privileges than even kernel

mode, and which is uninterruptible, provides the flexibility to implement OS
specific features

• IPLs, Software Interrupts and ASTs are implemented through a combination of
hardware support and PALcode

• Atomic queue instructions are provided by PALcode
• PALcode also provides the mapping from IPRs as expected by OpenVMS to

the hardware implementation’s IPRs
47

So how about Itanium Hardware?

• Very different story, Itanium’s design was finished before OpenVMS as an OS
was considered

• Offers the 4 modes OpenVMS needs
• The TPR (Task Priority Register) provides an IPL-like mechanism for hardware

interrupts only
• No compatible software interrupt mechanism or ASTs
• No atomic queue instructions
• No OpenVMS-compatible IPRs

48

Hence, SWIS

• SWIS (Software Interrupt Services) is a piece of low-level OS code that is
involved in mode changes.

• SWIS implements the software interrupt and AST support required by
OpenVMS, using hardware support as available.

• Other code in the OS (with some special support from the SWIS code to
ensure atomicity) provides atomic queue instructions

• A combination of code in SWIS and other code in the OS provides OpenVMS-
compatible IPRs

• SWIS makes the Itanium CPU look more like a VAX to the rest of the OS

49

Bridge Function
SWIS bridges the gap between the assumptions made by the rest of the OS to
the features supported by the hardware

50

ASTs Software
Interrupts

Context
Switching

Memory
Management

SWIS on X86-64
• Because a similar mismatch exists between OpenVMS’ assumptions and the

hardware-provided features, SWIS will be ported to X86-64.
• Ported means mostly re-written here, as the provided features are very

different between Itanium and X86-64.
• On X86-64, SWIS will have to do more, as the X86-64 architecture does not

provide the 4 mode support OpenVMS needs.
• Because of this, SWIS on X86 will not only be active when transitioning from

an inner mode to an outer mode, but also when transitioning from an outer
mode to an inner mode.

• Also because of this, SWIS now needs to become involved in memory
management (in a supporting role).

• There’s good news too: the Itanium architecture has some features that are
very complex to manage (think RSE), that are absent in X86-64.

51

Swis on X86-64
OpenVMS Expects:
• 4 Modes, different page protections,

separate stacks
• 32 IPLs (16 h/w, 16 s/w)

• Software interrupts tied to IPLs

• Per-process, per-mode ASTs,
delivered when below ASTDEL

• Atomic queue instructions
• VAX-like IPRs

X86-64 Offers:
• 2 rings, different page protections,

separate stacks
• 14 hardware TPR’s, mask off

hardware interrupts in groups of 16
• Software interrupts unaffected by

TPR’s. No IPL’s
• No AST-like concept at all

• No atomic queue instructions
• X86-64 IPRs

52

Itanium vs X86-64
Differences relevant to SWIS
between Itanium and X86-64

System Services
Itanium:
• EPC Instruction
• Can only be called within a protected

promote page
• First instruction executed in kernel

mode is the one following the EPC
instruction

• Does not disable interrupts

• Need to consider register stacks

X86-64:
• SYSCALL Instruction
• Can be called anywhere

• First instruction executed in kernel
mode is at a fixed, OS-determined
(MSR) address

• Can be set up to atomically disable
interrupts

• No register stack

54

Interrupts and Exceptions
Itanium:
• IVT is code

• Does not switch stacks

• Interrupted state is stored in
registers

• Need to consider register stack

X86-64:
• IDT contains descriptors that points

at code
• Switches to kernel-mode stack if

needed
• Interrupted state is stored on

kernel-mode stack
• No register stack

55

Memory Management
Itanium:
• 4 modes
• OS needs to handle an exception on

TLB miss
• Memory translations are at the OS’

discretion (Translation Registers)
• Support for URKW and similar

protections
• 8 261 byte regions in VA

X86-64:
• 2 useable rings (0 and 3)
• Processor walks page tables on

TLB miss
• All memory translations are page-

table based
• No support for ring 3 read, ring 0

write
• No regions

56

Finding Per-CPU SWIS Data Structure
Itanium:
• Mapped through a dedicated TR

• At fixed VA (0xE…0)
• Mapping of VA to PA is different on

each processor, and TR is not
touched on a context switch

X86-64:
• Mapped through the normal page

tables
• At a different VA for each CPU
• Mapping of VA to PA is identical for

each process, so it doesn’t change
on a context switch

• Can be found at address 0 in the
%GS segment on each CPU

• %GS segment is loaded from
segment descriptor 0x28 on each
CPU

• Segment 0x28 base VA is different
on each CPU

57

Finding the Per-CPU SWIS Data Structure (2)
Itanium:
• Accessing a field at offset 0x80:
movl r28 = 0xe0000…0080
ld8 r28 = [r28]

• Getting the address of the structure:
movl r28 = 0xe0000…0000

X86-64:
• Accessing a field at offset 0x80:
movq %gs:0x80, %rax

• Getting the address of the structure:
rdgsbase %rax
– or –
movq %gs:0, %rax

58

Porting SWIS
The porting process, a birds-eye overview

Design Phase

SWIS for X86-64 was designed over a period of 1.5 years (1 year part-time, 0.5
years full-time), in several phases:
• Basic design (not detailed enough to base implementation on)
• Detailed design for System Service dispatching
• Detailed design for Hardware Interrupt and Exception handling
• Detailed design for Software Interrupts and ASTs
• Detailed design for Processes and Kernel Threads

60

Design Review Phase

• Partial reviews as the design progressed
• In-depth 3-day review between myself and

Burns Fisher
• This one turned up a design flaw that could

have enabled unprivileged code to bring down the system
• Complete walk-through and review in one of our weekly X86-64 engineering

meetings
• A lot of the content in this presentation is based on the slides I prepared for

that walk-through

61

Implementation Phase

Implementation started in May 2017, broken down into different parts:
• Quick and Dirty Exception Handling for early code that needs something
• Data Structure Definitions
• VAX/Alpha IPRs
• Hardware Interrupts and Exceptions
• System Services
• Software Interrupts
• ASTs
• Initialization
• Processes and Scheduling

62

2 SYSTEM_PRIMITIVES execlet builds

• Compatibility build, works on any x86-64 CPU we support
• Performance builds, optimized for CPUs that have support for one or more of

the following:
1. Address Space Numbers (PCIDs) in TLB
2. RDGSBASE instruction
3. XSAVES/XRSTORS instructions for saving/restoring extended (“floating point”) registers

(MMX, SSE, AVX)
• Highest Performance build targets Intel processors made after 2013 (Ivy

Bridge and beyond).

63

The Guts of SWIS
A technical overview, with lots of details

SwInt and AST Delivery

Return address in
xswis $call _o_ast

KERNEL STACK AST DELIVERY STACK

ADBSSENTRY

Return address in
xswis $syscall _entry
Return address in

swis $deliver _swints
Return address in
swis $deliver _asts

Call SYS $ service
.
.
.

User Image

P0 Space System Space

SYS $service :
Load SS number in %R10
SYSCALL

SS Transfer Routine
XSWIS $SYSCALL _ ENTRY :
Build SSENTRY frame
Copy 7th ...n th arguments
Call EXE $service

EXE $ service :
.
.
.
RETCall

SWIS $DELIVER _SWINTS

SWIS $ DELIVER _SWINTS
Find software interrupt
to dispatch
Call through IDT

software -interrupt -
routine :
.
.
RET

Remove ACB from queue
Build ADB on outer mode
stack

.
Call SWIS $DELIVER _ASTS

SWIS $DELIVER _ASTS :

Set SP to SSENTRY frame
Set ASTDEL flag in
SSENTRY frame
Move SSENTRY frame
SYSRET

XSWIS $ CALL _O _AST :

(return from AST)

Remove SSENTRY frame

RET

SYSRET

Call EXE $CLRAST _MODE
Call SWIS $DELIVER _ASTS

Kernel ModeOuter Mode

SCH $ASTDEL _U _S:
Find AST to dispatch
Call through IDT

XSWIS $DELIVER _O _AST :

Call
XSWIS $DELIVER _ O_AST
RET

RET

ASTDEL

SSENTRY
ASTDEL

XSWIS $SYSCALL _ ENTRY :

Load 0 into %R 10
SYSCALL

ast _routine :
Call ast -routine.

.
RET

Mode “Components”

• Processor ring (0 for K, 3 for ESU)
• Stack pointer
• Address Space Number
• Page Table Base
• Current mode as recorded in the SWIS data structure

• A mode is “canonical” when all the above are in agreement
• SWIS should be the only code that ever sees non-canonical modes

• We prototyped this on Itanium
66

Basics of Mode Switching

• Interrupt or SYSCALL instruction
1. Switches CS and SS to ring 0
2. Switches to the kernel-mode stack (interrupt only, not SYSCALL)
3. Disables interrupts
• Get fully into kernel mode (ASN, PTBR, stack, DS, ES)
• Going in? -> Build return frame on stack
• Going out? -> Deliver SwInts and ASTs as needed
• Get into destination mode (ASN, PTBR, stack, DS, ES)
• IRET or SYSRET instruction
1. Switches CS and SS to ring 3
2. Switches to the outer-mode stack (IRET only, not SYSRET)
3. Enables interrupts 67

Context Switching

• Need to save/restore 4 PTBRs instead of 1
• MMX/SSE/AVX state will get saved using the XSAVE(S)/XRSTOR(S)

instructions
• Need to deal with performance monitoring and debugging registers
• Will have a “never scheduled” flag for initial process/thread creation (Alpha

uses canonical stack, Itanium uses the PFS register)  On first scheduling,
the stacks get zapped, and we go to the appropriate initialization routine for
the process/thread.

68

So how close were we?
Pretty close

We missed a few things though
•Impact of not having a PROBE instruction
•Need to deal with emulated Alpha registers
•Use of interrupt stacks
•Need to track where the kernel stack is to detect a KSNV

And we made some improvements
•Lightweight system services
•All SWIS variants in a single image

To learn more please contact us:
vmssoftware.com
info@vmssoftware.com
+1.978.451.0110

Thank You

	Slide Number 1
	VAX, Alpha, Itanium and x86-64
	Slide Number 3
	X86 Heritage
	Slide Number 5
	Slide Number 6
	And boy, did this present us with challenges…
	Processor Modes
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Architecture Documentation
	Slide Number 14
	Filling a bookshelf…
	… VAX
	… VAX, Alpha
	… VAX, Alpha, Itanium
	… VAX, Alpha, Itanium, X86
	Slide Number 20
	Some panned out
	Intel TSX
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	TSX
	Register Set
	VAX Register Set
	Alpha Register Set
	Itanium Register Set
	x86 Register Set
	Dealing with fewer registers
	Instruction Encoding
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Phew…
	Memory Layout
	Slide Number 43
	The Case for SWIS
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Itanium vs X86-64
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Porting SWIS
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	The Guts of SWIS
	SwInt and AST Delivery
	Slide Number 66
	Slide Number 67
	Slide Number 68
	So how close were we?
	Thank You

