
What is the NonStop Crown Jewel?
A closer look at the NonStop Kernel (NSK)

Bert van Es – Senior Instructor – NonStop Academy
April 2024

Agenda

Guardian and Open System Services file systems

Debugging and Run-Time architecture – TNS and TNS/X processes - Process control

InfiniBand and Cluster I/O Module subsystems

How is the x86 Based processor used? Memory Management – Little and Big Endian

Overview of L-series NonStop Operating Systems Architecture – Message based

2eGTUG/IT-Symposium 2024, Berlin

Overview of L-series NonStop
Operating Systems
Architecture
• Message based

Part 1

3eGTUG/IT-Symposium 2024, Berlin

4

• Ability of the node to survive any single hardware or software failure
• Ability of a properly-coded application to survive any single failure
• Assured data integrity

• When in doubt, fail fast
• Node and application scalability from 2 to 16 processors
• Application object code compatibility across releases
• Online repair of hardware resources

• Including online reintegration of replacement hardware

Tandem Computers Design Goals: 1974

eGTUG/IT-Symposium 2024, Berlin

General Characteristics of NonStop Servers

• Multiple independent logical processors.
• Hardware fault tolerance.
• Fault-tolerant operating system.
• High-performance SQL database.
• Hardware and software architectures that support:

• Availability.
• Data integrity
• Performance and expandability/scalability
• Open interface

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

iLO UID

4321

ProLiant
DL160
Gen10

iLO UID

4321

ProLiant
DL160
Gen10

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

UID

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

UID

1 0 K

S A S

3 0 0 G B

1 0 K

S A S

3 0 0 G B

1 0 K

S A S

3 0 0 G B

1 0 K

S A S

3 0 0 G B

1 0 K

S A S

3 0 0 G B

1 0 K

S A S

3 0 0 G B

1 0 K

S A S

3 0 0 G B

1 0 K

S A S

3 0 0 G B

1 0 K

S A S

3 0 0 G B

1 0 K

S A S

3 0 0 G B

UID

iLO

Drive Bay ID:

108642

531 ProLiant
DL360
Gen10

UID

iLO

Drive Bay ID:

108642

531 ProLiant
DL360
Gen10

UID

iLO

Drive Bay ID:

108642

531 ProLiant
DL360
Gen10

UID

iLO

Drive Bay ID:

108642

531 ProLiant
DL360
Gen10

iLO

UID

Drive Box ID:

Box 2Box 1

Box 3

ProLiant
DL380
Gen10

21 43 65 87

S
SD

S
A

T
A

1
2

0G
B

S
SD

S
A

T
A

1
2

0G
B

iLO

UID

Drive Box ID:

Box 2Box 1

Box 3

ProLiant
DL380
Gen10

21 43 65 87

S
SD

S
A

T
A

1
2

0G
B

S
SD

S
A

T
A

1
2

0G
B

iLO

UID

Drive Box ID:

Box 2Box 1

Box 3

ProLiant
DL380
Gen10

21 43 65 87

S
SD

S
A

T
A

1
2

0G
B

S
SD

S
A

T
A

1
2

0G
B

iLO

UID

Drive Box ID:

Box 2Box 1

Box 3

ProLiant
DL380
Gen10

21 43 65 87

S
SD

S
A

T
A

1
2

0G
B

S
SD

S
A

T
A

1
2

0G
B

JL088A

Fan Status

PS1

UID

Mgmt

PS2

Power Supply Blank
3810 Stacking Blank

JL087A

110V-240V~

JL085A

110V-240V~

JL085A

110V-240V~

JL088A

Fan Status

PS1

UID

Mgmt

PS2

Power Supply Blank
3810 Stacking Blank

JL087A

110V-240V~

JL085A

110V-240V~

JL085A

110V-240V~

A 4 CPU NS8

5eGTUG/IT-Symposium 2024, Berlin

HPE Integrity NonStop X architecture

InfiniBand System Area Network

…
memory

IPU 2

IPU 5IPU 4

IPU 3

memory

IPU 2

IPU 5IPU 4

IPU 3

memory

IPU 2

IPU 5IPU 4

IPU 3

memory

IPU 2

IPU 5IPU 4

IPU 3

0

1 2 n

IPU 0 IPU 1 IPU 0 IPU 1 IPU 0 IPU 1 IPU 0 IPU 1

6eGTUG/IT-Symposium 2024, Berlin

InfiniBand layout
NS8 Medium System Interconnect

. . .

. . .
. . .
. . .I/O Expansion

Switch X1
I/O Expansion

Switch Y1

• NS7: 34-port FDR IB switches in c7000 enclosure
• NS8: rack-mount 40-port HDR IB switches 1

Drive enclosures

IP CLIMs Telco CLIMs

IPSec, TCP/IP v4,
TCP/IP v6, SCTP M3UA, SIP, Diameter

Storage CLIMs
iLO

UID

Drive Box ID:

Box 2Box 1

Box 3

ProLiant
DL380
Gen10

21 43 65 87

IB-X IB-Y

iLO

UID

Drive Box ID:

Box 2Box 1

Box 3

ProLiant
DL380
Gen10

21 43 65 87

IB-X IB-Y

iLO

UID

Drive Box ID:

Box 2Box 1

Box 3

ProLiant
DL380
Gen10

21 43 65 87

IB-X IB-Y

iLO

UID

Drive Box ID:

Box 2Box 1

Box 3

ProLiant
DL380
Gen10

21 43 65 87

IB-X IB-Y

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

UID

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

UID

Storage CLIMs

iLO

UID

Drive Box ID:

Box 2Box 1

Box 3

ProLiant
DL380
Gen10

21 43 65 87

IB-X IB-Y

iLO

UID

Drive Box ID:

Box 2Box 1

Box 3

ProLiant
DL380
Gen10

21 43 65 87

IB-X IB-Y

. . .NonStop CPU 0
IB-X IB-Y

NonStop CPU 1
IB-X IB-Y

NonStop CPU N
IB-X IB-Y

. . .

. . .
. . .
. . .

1

Port 18 connection to
X fabric cluster switch

Port 18 connection to
Y fabric cluster switch

Root-level X
fabric switch

Root-level Y
fabric switch

7eGTUG/IT-Symposium 2024, Berlin

• NSK runs on standard available hardware, so the hardware is not special for NonStop.
• NSK is a message-based operating system giving you:

• Processor fault tolerance, because each logical processor has its own copy of the operating system not
sharing anything with another logical processor, and the message system offers them to communicate
with each other and when one fails the other can take over the load, so the application stays up.

• Software (process) fault tolerance, because the primary process running in one CPU can exchange
messages with its backup process with enough information, that when the primary dies, the backup can
continue to work where the primary stopped.

• Scalability – you can start with a small 2-processor system and grow to a 16-processor system and with the
same message system over Expand grow to a HPE NonStop network of 4080 processors without to change
the application.

So why is the HPE NonStop OS or NSK the Crown Jewel?

8eGTUG/IT-Symposium 2024, Berlin

Interprocess Communication

9eGTUG/IT-Symposium 2024, Berlin

What the Message System Provides

• Geographic independence.
• Fast, priv interface.
• Transport.
• Detects and recovers from errors.
• Message interface is 2-way: Request/reply.
• Nowait interface: Client chooses when to wait for return of incoming message or reply message.
• Sessionless: Unlike the file system, no open or connection establishment necessary. Can always send a

message.
• Fault tolerance.

10eGTUG/IT-Symposium 2024, Berlin

Interprocess Communication — Message System

A

B

C

Request

Request

Don
e

Done

Linker Listener

Listener

Linker

11

Msg
Syst

Application

I/O, Monitor, and so on.

ServicesMsg
Syst

Services

eGTUG/IT-Symposium 2024, Berlin

Message System Transfer Protocols (Infiniband)

MSG_LINK_

MSG_BREAK_

WAIT

WAIT

MSG_LISTEN_

MSG_READCTRL_

WAIT

MSG_READDATA_

MSG_REPLY_

Request

(HREQ packet)

Reply

(HREPLY packet)

Linker (Client) CPU Listener (Server) CPU

Linker
process

suspended
(LDONE)

(LREQ)

12eGTUG/IT-Symposium 2024, Berlin

Code Generation, Address Space, Code Space,
and Native Process Execution

13eGTUG/IT-Symposium 2024, Berlin

Virtual Address Spaces

2 GB

261 Byte Regions

Per-
Process

Non-Priv
and
Priv

Global

Priv and
Non-Priv

Per-
Process

Non-Priv
and
Priv

Global

Priv and
Non-Priv

Processor VA

Process A
32-bit VA Process B

32-bit VAProcess A
64-bit VA

Process B
64-bit VA

0

4 GB

14eGTUG/IT-Symposium 2024, Berlin

Native Code Generation

MAIN Ord.
DLLs

Stacks

Assembler
Source

DLL
Source

Assembler
•Millicode

Implicit
DLLs SG

Pub.
DLLs

Native objects are ELF files,
TNS/X (if Guardian) File Code 500.

TNS/ETNS/E

Appl.
Source

native

Native Link
Editor

Native
Language
Compiler

Appl.
Source

Native
Language
Compiler

native

Native Link
Editor

native

TNS/ETNS/Enative

nativeNative Link
Editor

“MAKE”OSBUILDDSM/SCM

Native
Language
Compiler

TNS/ETNS/Enative

native

15eGTUG/IT-Symposium 2024, Berlin

Native Process Execution Environment
Sel

32 Bits

Current Process
Millicode

Addr
IP-Register

General
Purpose

Implicit
DLLs SG

Main Ordinary
DLLs

Stacks

Selectable

Main
Pgm

Ord.
DLLs

Stacks

Main
Globals

Flat

Main

DLL
dll

Kseg0

2GB

4GB

...

Public
DLLs

DLL
Globals

Flat
...

Extended Data

...

Flat

DLL
Globals

Selectables

Extended Data

$SP

DLL Globals

[Heap]

Main Globals

[Heap]

Main Globals

DLL Globals

(Processor
-wide:
Logical segs
From top of
Oval go here
+ OS data
structs)

16eGTUG/IT-Symposium 2024, Berlin

Code Generation, Address Space, Code Space,
and TNS Process Execution

17eGTUG/IT-Symposium 2024, Berlin

TNS Code Generation

18

UC.x UL.x

OR

TNS Process

. . .

[BIND]
Code.1
Code.0

...
Code.n

TNS
Instructions

TNS
Language
Compiler

Code.1
Code.0

...
Code.n

TAL
C/C++

COBOL85
FORTRAN
PASCAL

Source

TNS
Instructions

TNS
Language
Compiler

Code.1
Code.0

...
Code.n

TAL
C/C++

COBOL85
FORTRAN
PASCAL

Source

TNS
Instructions eGTUG/IT-Symposium 2024, Berlin

TNS Register Architecture

• ENV register – various status fields
• 3 bits form the register pointer (which is call RP and frequently used like is was truly separate register)

• Register Stack of 8 16-bit registers, with RP pointing to the current top of stack. This top of stack
register is used implicitly by most TNS instructions

• P register – the TNS instruction pointer
• S register – the current top of memory stack register (grows positive)
• L register – the base of the current memory stack frame

19eGTUG/IT-Symposium 2024, Berlin

TNS Process Execution

Priv
Stacks

.1

.2

.1

Current Process

UDr

...

UD
SD

Selectable Seg

UC

Main

Flat
Extended
Data

UL

1-GB

Selectable
Extended

Data

Flat
Extended

Data
...

SLa
(IPF)

UC.x
UL.x

UD

SL.x
(TNS) SG

Main
Stacks

UC.0 UL.0 UD

.2

ULa

Selectable
Extended

Data

Flat
Extended

Data

TNS emulation
Millicode

native
Millicode

...
Implied
DLLs

“SC”

Millicode
2 GB

SL/
SLa

Implicit DLLs
VKseg0

TNS Stack

20eGTUG/IT-Symposium 2024, Berlin

Executing TNS

TNS IPU REG Stack
Emulations

R0

R7

..

.

Globals

TNS Stack

UD

TNS Inst

16-Bit CISC Inst

Millicode

TNS Inst Emulation

Fetch and Decode

TNS (Emulation) Millicode

Native Instructions

3

TNS Code

Physical
Memory

IPF IPU

native Inst

IP-Register (64 Bits)

TNS
Registers

TNS
IPU
Regs
Emulations

1

2

1

3
CSPACEID
Env-Reg

P-Reg
L-Reg
S-Reg

TNS
State
Block

Memory

128 KB

21eGTUG/IT-Symposium 2024, Berlin

NonStop TNS (Accelerated) Process Execution

Priv
Stacks

Main
Stacks

UDr

.1

.2

.1

Current Process

...

UD
SG

Selectable
Extended
Data

UC

Main

Flat
Extended
Data

UL

UCa

Millicode

1GB

2GB

ULa
SL/
SLa

Implicit DLLs
VKseg0

Selectable
Extended

Data Flat
Extended

Data...

SLa
(IPF)

UC.x
UL.x

UD

SL.x
(CISC) SG

ULa

UC.0 UL.0 UD

.2

ULaUCa

Selectable
Extended

Data

Flat
Extended

Data

UCa

TNS
Millicode

native
Millicode

...

“SC”
Imp.
DLLs

TNS Stack

22eGTUG/IT-Symposium 2024, Berlin

How is the x86 Based
processor used?

• Memory Management
• Little and Big Endian

Part 2

23eGTUG/IT-Symposium 2024, Berlin

Translation Hardware

• x86 is a traditional CISC architecture:
• The HW does a page table lookup to access the physical page and the TLB caches the result. It may also

cache the page tables themselves.
• Page tables are shared among all IPUs

• The page tables are shared among all IPUs of the CPU.
• So, XPF uses the GS (or %gs) register for that purpose.

• The system always runs in 64-bit mode and uses four level page tables.

24eGTUG/IT-Symposium 2024, Berlin

25

• A canonical address is x86-64 is where
the 52-48 bit virtual address is sign
extended.

• To make a 16KB page 4 4KB PTEs
are updated as a group (interrupts
masked). The dirty and other bits when
checked are the orring of the four
entries.

• The TLB is loaded by the HW when a
lookup is done.

• Each of the four tables (L4, L3, L2, and
L1) have 512 entries.

X86-64 Page tables, 4KB pages

CR3

3239404748555663 08162431 15 723

4K
 m

em
or

y
pa

ge

Linear address:

64 bit PD
entry

page directory

PDP
entry

page-directory-
pointer table

64 bit PT
entry

page table

PML4
entry

PML4 table
99

40*

9 9 12

sign extended

*) 40 bits aligned to a 4-KByte boundary

L2 L1
L3

L4

eGTUG/IT-Symposium 2024, Berlin

Lesson 8

Page Faults

26eGTUG/IT-Symposium 2024, Berlin

XPF: Software Interrupt Vector Code

• A TLB miss causes a HW page table search which finds an invalid page (for this current kind of
access).

27eGTUG/IT-Symposium 2024, Berlin

Absent — Page Fault

PT

Data for
Assigned
Physical Page

Available?

Virtual Memory
Physical Memory

Absent
Absent

Free Free Free

..

28eGTUG/IT-Symposium 2024, Berlin

Pfault Proc Initializes the Fault-In Page in Faulting Process Context

Or
KMSF RTNs

File System
Physical
Frame

Faulting Process KMFS

or

Data

Temp/Perm SWAP

Not shown: Uninitiated data pages are mapped to
mapping tables pointing to a page of zeroes.

DP

Data

Pfault Proc

29eGTUG/IT-Symposium 2024, Berlin

Frame Selection — Clock Algorithm
MMG.vmPageTable
Array of NSKMPage

Ref Bit

Dirty Bit

Locked By
OSBUILDER

First Page Assigned
to Virtual Memory

0 1 2 3. . . .
Physical Frame Number

0

1
1

1 1

0
11

0
0

Wired = L[ocked]
HardCME = C
Not Sponsored = F[ree]

L
C

F

L
Skip Locked

Place on Mem. Man. Write Queue

Skip Locked

Zero Ref. Bit and Skip
Skip CME

Zero Ref. Bit and Skip
Take This Page! Clock Pointer Ends Here

Clock Pointer Starts Here

nnnn

Lock Bit

30eGTUG/IT-Symposium 2024, Berlin

Memory Manager Process Role Reduced

• Page faults are handled in the context of the faulting process.
• The functions of the memory manager process have been drastically reduced. The memory

manager now:
• During initialization, common opens implicit DLLs.
• Replenishes the supply of pages available for allocation under mutex.
• Cleans pages.

• Every 10 seconds, runs the clock to:
• Age pages (turn off reference bits).
• Add dirty pages to the dirty page queue.

• Woken up on INTR when there are dirty pages.
• Writes them out to disk and puts them on a “stealable” list.
• Can wake up a process waiting for a page.

31eGTUG/IT-Symposium 2024, Berlin

Endianism - Big vs Little endian

32eGTUG/IT-Symposium 2024, Berlin

• Big Endian means that for a given datum the high order byte is stored first in memory (lowest
address) and the low order byte is stored last (highest address).

• Little Endian means that for a given datum the low order byte is stored first in memory (lowest
address) and the high order byte is stored last (highest address).

• So, for the number x01020304:

• TNS, MIPS, and Itanium are Big endian.
• X86-64 is Little endian

Big vs Little Endian

address 0000 0001 0002 0003

Big 01 02 03 04

Little 04 03 02 01

33eGTUG/IT-Symposium 2024, Berlin

• NonStop runs x86 in “Big Endian by doing the following:
• All program (source level) variables are written to memory as big endian datums.
• For data that is little endian in memory but must be presented to a user/program the data is changed to

big endian format.
• Some parts of the system actually run in little-endian mode (i.e., it sees real little-endian data). This

include the TNS emulator and millicode.
• So, if you look at raw memory of a process there is a mix of little- and big-endian items.
• Some things in little endian format:

• Page table data.
• Addresses pushed onto the memory stack by a call or interrupt.
• Register values in a jump buffer.

Making XPF Big Endian

34eGTUG/IT-Symposium 2024, Berlin

• The OS part that deals with page tables, and other structures known to the x86-hardware.
• The debuggers which know the difference between program variables and “hidden” data.
• The TNS emulator.
• All native compilers.

What parts of the system know about Little endian?

35eGTUG/IT-Symposium 2024, Berlin

• InfiniBand
• Cluster I/O Module

subsystems

Part 3

36eGTUG/IT-Symposium 2024, Berlin

InfiniBand

37eGTUG/IT-Symposium 2024, Berlin

NS3/NS7

NS4/NS8

Fourteen Data Rate InfiniBand (4X)

38eGTUG/IT-Symposium 2024, Berlin

39

XPF Message System layers

On InfiniBand the Message System has a similar set
of layers, with the Message Driver layer changed to
support IB and talk to the NCSL API and
RDMA Services below it instead of the TNet Services:

eGTUG/IT-Symposium 2024, Berlin

IB Connections vs SNet Connnectionless

• Using SvNet each message includes
the address of the target CPU.

• However, IB is a connected
protocol, so each CPU is connected
to every other CPU. (A la sockets)
• Moreover, there are multiple

connections to allow the different
classes of messages to move
independently.

IB (Y)

CPU A

IB (X)

CPU B

HiPri-X
VQP Group

HiPriVQP HiPri2
VQP

HiPri-X VQP Group

HiPri
VQP

HiPri2
VQP

HiPri-Y
VQP Group

HiPri
VQP

HiPri2
VQP

HiPri-Y VQP Group

HiPri
VQP

HiPri2
VQP

LoPri
VQP Group

HREQ
VQP

HREP
VQP

PIO
VQP

…

HiPri-Y VQP Group

HREQ
VQP

HREP
VQP

PIO
VQP

…

40eGTUG/IT-Symposium 2024, Berlin

41

Sending request : ctrl + data size ≤ 7576† bytes

• The generic MS link operation is mapped
to an IB send

• The MS reply is also linked to
and IB send.

Message System Transfer Protocols on IB

(All the data is pushed along with the HREQ packet in an IB
Send operation)

MSG_LINK_

MSG_BREAK_

WAIT

WAIT

MSG_LISTEN_

MSG_READCTRL_

WAIT

MSG_READDATA_

MSG_REPLY_

Linker (Client) CPU Listener (Server) CPU

Linker
process

suspended
(LDONE)

(LREQ)
Receive
Buffer
(IMQC)

Copies req data
from IMQC

Copies req ctrl
from IMQC

† The 7576 byte limit depends on MsgSys and NCSL
sizes which may change in the future.

eGTUG/IT-Symposium 2024, Berlin

•I/O transfer:
• I/O as remote memory transfer.
• NonStop L-series: InfiniBand uses IB connections and its memory mappings.

General NonStop I/O

42eGTUG/IT-Symposium 2024, Berlin

Storage I/O

• High level view of storage I/O
• Life of an I/O operation

• Initiation
• Data transfer
• Completion

• Starting a device

43eGTUG/IT-Symposium 2024, Berlin

IB based Storage Subsystem

44eGTUG/IT-Symposium 2024, Berlin

Storage Protocol

45

SRP RSP

SRP CMD

NSK
CPU

IB

Storage
CLIM

SAS or FC

InfiniBand: SCSI RDMA Protocol (SRP)

SRP = SCSI RDMA Protocol

eGTUG/IT-Symposium 2024, Berlin

XPF Storage Software Stack

SML

SCSI LLDD

NCSL + RDMA Services

InfiniBand Stack

Tape IOP
Open SCSI

IOP

Upper Layer – IOPs
(minimal changes from SNet)

Mid Layer – SML
(new / re-write)

Low Layer – SCSI LLDD
(new)

DP2
I/O Driver

46eGTUG/IT-Symposium 2024, Berlin

Storage CLIM - CLIM Software Stack

Storage Module

SRPT CTD

NCSL + RDMA Services

InfiniBand Stack

SAS/FC LLDD

NSVLE

To device
(backend)

To NSK
(frontend)

LUNMGR
(Storage Module)

47eGTUG/IT-Symposium 2024, Berlin

IB based TCP/IP Subsystem

48eGTUG/IT-Symposium 2024, Berlin

• Cluster I/O Protocol (CIP) Subsystem
–Provides a configuration and

management interface for I/O
• Uses a Linux server as a front end

–Moves network stacks from the
NonStop host to a Linux server

• Leverages the Open-Source Linux
environment

• Provides support for IPsec, SCTP, IPv6
• Dual Infiniband fabrics connections
• Provides Gigabit and 10 Gigabit Ethernet interfaces
• The CLIM provides the physical interface

to the network or storage devices

Theory of Operation - IP CLIM

NonStop BladeSystem

Application
Socket Calls
IP CLIM SW

TCP Stack

IP CLIM SW

Ethernet Links

ServerNet

IP CLIM

49eGTUG/IT-Symposium 2024, Berlin

CIP Software Architecture Overview (IP CLIM (XPF version))

SCF

CIPSCF
FS

NSCL (RDMA SVC)
CLIMAGT CIPSSRV

LINUX Sockets

OFED/IB Driver
CLIM/Linux

CIPSREQ
NSCL

RDMA Services
QIO

CIPMAN -BCIPMAN -P

Socket Appl
FS

CSIF
CIPSAM

One per PROVIDER

IKE

SSH

One per CPU

SCF

CIPSCF
FS

TACL
CLIMCMD

eth0:0

CIPMONF

NSCL

QIO

RDMA Services

CIPMON …CIPMON0

OFED /IB Driver

OFED / IB Driver

One per
system

One per CPU

50eGTUG/IT-Symposium 2024, Berlin

• Debugging
• Run-Time architecture

• TNS Prtocesses
• TNS/X processes

• Process control
• Guardian
• OSS

Part 4

51eGTUG/IT-Symposium 2024, Berlin

Guardian Versus OSS Processes

Guardian Process

PFS

Guardian PCB

Guardian
Object

File

G

TNS Or native

OSS
Object

File

OSS

Native Only

OSS Process

PFS

OSS PCB

OSS PCB Extension

Required for Certain
OSS Service Requests

Application

Application
Request
Service

Interface

Application

Application
Request
Service

Interface

(x) (Same As Guardian PCB) +

52eGTUG/IT-Symposium 2024, Berlin

Guardian Process Control

53eGTUG/IT-Symposium 2024, Berlin

Process Creation

• Guardian environment:
• NEWPROCESS

–Uses PID for the process identifier.
–PID cannot identify process numbers > 255.

• PROCESS_CREATE_
–Uses PHANDLE (process handle) to identify processes.

• PROCESS_LAUNCH_
–Can override native process defaults.
–Uses an extensible struct to pass parameters.

• From a TACL prompt, the RUN command uses PROCESS_LAUNCH_.

54eGTUG/IT-Symposium 2024, Berlin

Process Creation — Guardian Environment

NSKPO_Release()

Phoenix

User Process Monitor

55eGTUG/IT-Symposium 2024, Berlin

RLD Symbol Resolution

• For each load module:
• Determines what symbols each load module defines.
• Determines what symbols each load module needs resolved.
• Resolves each symbol from the loadlist.
• Fills in the GOT tables with the values of the symbols.

56eGTUG/IT-Symposium 2024, Berlin

Phoenix Handling of Named Processes

Next Processor

DCT

NRL

Phoenix

PPL

DCT

NRL

PPL

57eGTUG/IT-Symposium 2024, Berlin

Guardian Process Creation — Summary
Creator
Process

Call
Process_Create_

Create Phoenix
process.

Init PCB,PFS, defines. Get Pgm
loadmod and UL load mod info.
For each Load Mod:
Common Open,
Make VA space for code, data
and reserve KMS swap.
Resolve symbols.
Update DCTs. Awaken monitor.

Finalize PCB.
Reply to creator
process.

Receive start-up
environment.

Send start-up
environment.

Monitor Phoenix/
RLD DLL

New
Process

NSKPO_SurrenderSelf_()

NSKPO_Release_()

NSKPO_Release_()

New MTCB on RLIST
58eGTUG/IT-Symposium 2024, Berlin

Process Termination —PROCESS_STOP_ Procedure

Process

Monitor

PROCESS_STOP_

59eGTUG/IT-Symposium 2024, Berlin

Guardian Termination — Summary

Process

Call
PROCESS_STOP_

Convert process to
Phoenix process.

Execute XSTOP procedure.
- Close files.
- Release memory.
- FREE TLEs.
- Cancel incoming messages.
- Awaken monitor.

Send termination
message to mom
and ancestor.
Remove DCT entry.
Return PCB.

Monitor Phoenix

NSKPO_SurrenderSelf_ ()

NSKPO_Release_ ()

60eGTUG/IT-Symposium 2024, Berlin

Monitor Functions

• Starts and stops processes.
• STM and others give Monitor the process to terminate after fatal traps.
• Dynamic system configuration.

• Performs process control.
• Returns information.
• Maintains the system time-of-day.

61eGTUG/IT-Symposium 2024, Berlin

OSS Process Control

62eGTUG/IT-Symposium 2024, Berlin

OSS Process Creation

• OSS environment.
• fork().
• exec*().
• Shell run.
• tdm_spawn().
• tdm_*() takes additional parameters similar to PROCESS_LAUNCH_.
• PROCESS_SPAWN_ - can be used from a Guardian process.

– It is used by the OSH program.

63eGTUG/IT-Symposium 2024, Berlin

Process Creation — OSS

fork()

C
fork()

B

1 — Single, monolithic program,
multithreaded, difficult to
write and to test.
Each thread handles one request.

2 — One program forks itself, keeping its
opens, and each forked copy shares
the code. Simpler to write and test
because not multithreaded.
Each process handles one request.

listen

A

B

C

listen
fork()

fork()

A

64eGTUG/IT-Symposium 2024, Berlin

Process Creation — OSS fork()

fork()

Starts execution
from instruction
following fork().

Parent

Child

Data Environment
OSS File Opens

Data Environment
OSS File Opens

Passed
As Is

65eGTUG/IT-Symposium 2024, Berlin

The Copy Environments

Parent

PFS Global + Heap

Child
LALTPFS

TPFS

PFS

66eGTUG/IT-Symposium 2024, Berlin

Process Creation — OSS exec()

exec()

Starts at
Beginning
of main()

Parent

Child

Data Environment
File Opens

Data Environment
File Opens

Selected by arguments
and parameters to the

exec() procedure.

Following the start of
the child process, the
parent goes away.

67eGTUG/IT-Symposium 2024, Berlin

Process Creation — OSS fork(), exec()

When started, begins
execution from instruction

following fork()
exec()

Selected by arguments and parameters
to the exec() procedure

fork()

Parent

Child

Data
Environment

File Opens

Passed as Is

Starts execution using the
selected data passed by

the parent

Data
Environment

File Opens

Data
Environment

File Opens

68eGTUG/IT-Symposium 2024, Berlin

Process Creation — OSS tdm_spawn()

tdm_spawn()

Starts execution
using the selected
data passed by the

parent

Parent

Child

Data Environment
File Opens

Data Environment
File Opens

Selected by
arguments and

parameters to the
spawn() procedure

Following the start
of the child
process, the

parent continues
operation

69eGTUG/IT-Symposium 2024, Berlin

Debuggers

70eGTUG/IT-Symposium 2024, Berlin

What are the L-Series Debuggers?

• xInspect (Native Inspect):
• Original based on GNU debugger and running from the TNS/X command line.

• NSDEE (Eclipse) version 13:
• Supports Native TNS/E and TNS/X debugging (no TNS)
• Part of Eclipse development environment
• PC hosted GUI

• Inspect:
• TNS debugging only.

• TNS Visual Debugger (TNSVDBG):
• TNS debugging only
• Basically, Visual Inspect but restricted to TNS only debugging on TNS/X systems

71eGTUG/IT-Symposium 2024, Berlin

Debug
view

Source

Variables
view

Console
view

Perspective
switcher

Appl.
node

xinspect
node

Debug Perspective

72eGTUG/IT-Symposium 2024, Berlin

• Guardian file system
• Open System Services file

system

Part 5

73eGTUG/IT-Symposium 2024, Berlin

Functions of the File System

• Callable interface to message system.
• Logical file name to process handle (phandle) resolution.
• Passes security information to the IOP or file-system layer of the application server.
• Device independence: Everything is treated as a file.
• Keeps track of outstanding messages and associated buffers.
• Some fault tolerance support.
• (For disk) Partition file and alternate-key support.
• What the file system does not do: IOPs and TMF software, though not part of the file system,

provide functions that are often associated with a file system.

74eGTUG/IT-Symposium 2024, Berlin

File Systems

Guardian OSS

Message System

Applications

File Systems

NonStop SQL

75eGTUG/IT-Symposium 2024, Berlin

Control Structures for Guardian File System

• Access control block (ACB) — Opener controlled.
• Destination control table (DCT) — Kernel-reserved

segments.
• File table.
• IOP has open control block (OCB) corresponding to ACB.
• Disk process has a file control block (FCB) to represent each open disk file.

76eGTUG/IT-Symposium 2024, Berlin

Open Request Processing Between Requester and Server

Application
Might Send OPEN

Case 1
to IOP

Case 2
Or To Application

Application

IOP

Server

77eGTUG/IT-Symposium 2024, Berlin

Requester Open Logic

Process
. . .

Tape
. . .
Disk

Open Logic

Name Type

DCT

Process
. . .

Tape
. . .
Disk

OPEN Proc

Call OPEN
(..., ..., ...)

File Name

1
2

4

3

78eGTUG/IT-Symposium 2024, Berlin

Open Request Processing By the IOP

Requester IOP

Open Request

Open ID

Open Reply

Open ID

ACB [filenum] OCB [ocbnum]

Verifier

79eGTUG/IT-Symposium 2024, Berlin

Process-File Segment (PFS)

File Table Offset
Pool Space Pool Header Globals

Pool Space

ACB File 0

File Table

ACB File 1

Define

Define

80eGTUG/IT-Symposium 2024, Berlin

ACBs, Guardian File System

Receive Section
Process Handle
Receive Depth

Process Section
Process Handle

Device Section
Device Handle

$RECEIVE

Process
Device

Nondisk

ACB
File Name

ACB (Standard)

ACB
File Name

ACB (Standard)

ACB (Standard)

ACB
File Name

81eGTUG/IT-Symposium 2024, Berlin

OSS File System

• OSS file system refers to an entire collection of files.
• File system includes a hierarchical structure of directories, subdirectories, and files.
• File system has a single root.

82eGTUG/IT-Symposium 2024, Berlin

Guardian Disk File-Name Hierarchy Has Few Levels

• Guardian Disk File Organization

$OTHVOL

1

2

SUBVOL1

SUBVOL2

AFILE1
AFILE2

BFILE1
BFILE2

4

4

3

3

$OURVOL2

MYSUBVOL

MYSUBVOL

MYFILE1
MYFILE2

YRFILE1
YRFILE2

4

4

3

3

\MYNODE.$OURVOL.MYSUBVOL.MYFILE1

\MYNODE.$OURVOL.YRSUBVOL.YRFILE1

\MYNODE

NonStop Node
Disks
Subvolumes
File ID

Legend
1
2
3
4 83eGTUG/IT-Symposium 2024, Berlin

OSS Pathname Mapping

...

usr bin

bob sh ls

Name Server

$ZPNS

alice

Catalog

/usr/alice/proj/schedule $DATA1.ZYQ00003.Z000002A

/

mgr proj

...

$DATA1

$DATA2

84eGTUG/IT-Symposium 2024, Berlin

OSS Open — Regular

$ZPNS
Name Server

File-Set
Catalogs

Name Resolution
Open

Guardian Funny File
(ZYQnnnnn.Zxxxxxxx)

OSS Application
Program

(call open("a/b", ...))

Disk Process

PXS
(POSIX Segment)

POB

PFS
filetable

ACB

fd Table

PXINODE

PXLINK

1

3

2

4

3

Vnode

Tnode

85eGTUG/IT-Symposium 2024, Berlin

Would you like to know more?

• This slide deck is a heavy compressed version of the 5 day “HPE Integrity NonStop Operating
System Architecture U8609S” course.

• If you would like to know more, you should enrol for the U8609S course.
• The U8609S course is scheduled in the EMEA (CET) and USA (CT) time zone and delivered in

English.
• Current scheduled sessions:

• May 6, US Central Time
• June 17, Central European Time
• October 28, US Central Time
• November 18, Central European Time

• Check out any changes in our schedule and register on: www.nonstop-academy.com

86eGTUG/IT-Symposium 2024, Berlin

http://www.nonstop-academy.com/

THANK YOU

Questions?

Thank you for attending this talk
What is the NonStop Crown Jewel?

Bert van Es
bert.van.es@continuous.nl

	What is the NonStop Crown Jewel?�A closer look at the NonStop Kernel (NSK)
	Agenda
	Part 1
	Tandem Computers Design Goals: 1974
	General Characteristics of NonStop Servers
	HPE Integrity NonStop X architecture
	NS8 Medium System Interconnect
	So why is the HPE NonStop OS or NSK the Crown Jewel?
	Interprocess Communication
	What the Message System Provides
	Interprocess Communication — Message System
	Message System Transfer Protocols (Infiniband)
	Code Generation, Address Space, Code Space, and Native Process Execution	
	Virtual Address Spaces
	Native Code Generation
	Native Process Execution Environment
	Code Generation, Address Space, Code Space, and TNS Process Execution	
	TNS Code Generation
	TNS Register Architecture
	TNS Process Execution
	Executing TNS
	NonStop TNS (Accelerated) Process Execution
	Part 2
	Translation Hardware
	X86-64 Page tables, 4KB pages
	Page Faults
	XPF: Software Interrupt Vector Code
	Absent — Page Fault
	Pfault Proc Initializes the Fault-In Page in Faulting Process Context
	Frame Selection — Clock Algorithm
	Memory Manager Process Role Reduced
	Endianism - Big vs Little endian
	Big vs Little Endian
	Making XPF Big Endian
	What parts of the system know about Little endian?
	Part 3
	InfiniBand
	Fourteen Data Rate InfiniBand (4X)
	XPF Message System layers
	IB Connections vs SNet Connnectionless
	Message System Transfer Protocols on IB
	General NonStop I/O
	Storage I/O
	IB based Storage Subsystem
	Storage Protocol
	XPF Storage Software Stack
	Storage CLIM - CLIM Software Stack
	IB based TCP/IP Subsystem
	Theory of Operation - IP CLIM
	CIP Software Architecture Overview (IP CLIM (XPF version))
	Part 4
	Guardian Versus OSS Processes
	Guardian Process Control
	Process Creation
	Process Creation — Guardian Environment
	RLD Symbol Resolution
	Phoenix Handling of Named Processes
	Guardian Process Creation — Summary
	Process Termination —PROCESS_STOP_ Procedure
	Guardian Termination — Summary
	Monitor Functions
	OSS Process Control
	OSS Process Creation
	Process Creation — OSS
	Process Creation — OSS fork()
	The Copy Environments
	Process Creation — OSS exec()
	Process Creation — OSS fork(), exec()
	Process Creation — OSS tdm_spawn()
	Debuggers
	What are the L-Series Debuggers?
	Debug Perspective
	Part 5
	Functions of the File System
	File Systems
	Control Structures for Guardian File System
	Open Request Processing Between Requester and Server
	Requester Open Logic
	Open Request Processing By the IOP
	Process-File Segment (PFS)
	ACBs, Guardian File System
	OSS File System
	Guardian Disk File-Name Hierarchy Has Few Levels
	OSS Pathname Mapping
	OSS Open — Regular
	Would you like to know more?
	�Questions?��Thank you for attending this talk�What is the NonStop Crown Jewel?��Bert van Es�bert.van.es@continuous.nl��

